1、知识点8:待定系数法求二次函数的解析式,二次函数图象的位置与a,b,c之间的关系,二次函数与x轴的交点情况及与一元二次方程根与系数之间的内在联系一、选择题1.08山东日照假设A,B,C为二次函数的图象上的三点,那么的大小关系是 AB CD 答案:B2.(2023浙江义乌):二次函数的图像为以以下图像之一,那么的值为( )A.1 B 1 C. 3 D. 4答案:A3.2023山东威海二次函数的图象过点A1,2,B3,2,C5,7假设点M-2,y1,N-1,y2,K8,y3也在二次函数的图象上,那么以下结论正确的选项是 Ay1y2y3By2y1y3Cy3y1y2Dy1y3y2 答案:B4.2023
2、年山东省滨州市假设A-4,y1,B-3,y2,C1,y3为二次函数y=x2+4x-5的图象上的三点,那么y1,y2,y3的大小关系是 A、y1y2y3 B、y2y1y3 C、y3y1y2 D、y1y3y2答案:B5.(2023年浙江省绍兴市)点,均在抛物线上,以下说法中正确的选项是 A假设,那么B假设,那么C假设,那么D假设,那么答案:D6.(2023年天津市)把抛物线向上平移5个单位,所得抛物线的解析式为 ABCD答案:A7.(2023年乐山市)二次函数的图象如以下图,令,那么 AM0 B. M17.(2023 河南实验区)如图是二次函数图像的一局部,该图在轴右侧与轴交点的坐标是 答案:1,
3、0三、简答题1.2023年四川省宜宾市:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A-1,0、B0,3两点,其顶点为D.(1) 求该抛物线的解析式;(2) 假设该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;(3) AOB与BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.注:抛物线y=ax2+bx+c(a0)的顶点坐标为解: 1由得:解得c=3,b=2抛物线的线的解析式为(2)由顶点坐标公式得顶点坐标为1,4所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)设对称轴与x轴的交点为F所以四边形ABDE的面积=93相似如图,BD=BE=DE=所以, 即
4、: ,所以是直角三角形所以,且,所以.2.2023年陕西省如图,矩形的长、宽分别为和1,且,点,连接1求经过三点的抛物线的表达式;2假设以原点为位似中心,将五边形放大,使放大后的五边形的边长是原五边形对应边长的3倍请在以以下图网格中画出放大后的五边形;3经过三点的抛物线能否由1中的抛物线平移得到?请说明理由解:1设经过三点的抛物线的表达式为 , 解之,得 过三点的抛物线的表达式为3不能理由如下:设经过三点的抛物线的表达式为,解之,得,经过三点的抛物线不能由1中抛物线平移得到3.2023 四川 泸州如图9,在函数的图像上,都是等腰直角三角形,斜边、,都在轴上求的坐标求的值解:1由是等腰直角三角形
5、,得,那么有,故负舍,点2,2。2由题意知又,那么那么,故,同理,依次得那么=。42023泰州市二次函数y1=ax2bxca0的图像经过三点1,0,3,0,0,1求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图像;5分2假设反比例函数y2=x0的图像与二次函数y1=ax2bxca0的图像在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图像,写出这两个相邻的正整数;4分3假设反比例函数y2=x0,k0的图像与二次函数y1=ax2bxca0的图像在第一象限内的交点A,点A的横坐标x0满足2x03,试求实数k的取值范围5分解:1设抛物线解析式为y=a(x-1)(x
6、+3)1分只要设出解析式正确,不管是什么形式给1分将0,代入,解得a=.抛物线解析式为y=x2+x- 3分无论解析式是什么形式只要正确都得分画图略。没有列表不扣分5分2正确的画出反比例函数在第一象限内的图像7分由图像可知,交点的横坐标x0 落在1和2之间,从而得出这两个相邻的正整数为1与2。9分3由函数图像或函数性质可知:当2x3时,对y1=x2+x-, y1随着x增大而增大,对y2= k0,y2随着X的增大而减小。因为AX0,Y0为二次函数图像与反比例函数图像的交点,所心当X0=2时,由反比例函数图象在二次函数上方得y2y1,即22+2-,解得K5。11分同理,当X0=3时,由二次函数数图象在反比例上方得y1y2,即32+3,解得K18。13所以K的取值范围为5 K1814分52023年江苏省连云港市如图,在平面直角坐标系中,点的坐标分别为1请在图中画出,使得与关于点成中心对称;2假设一个二次函数的图象经过1中的三个顶点,求此二次函数的关系式解:1如以下图 2由1知,点的坐标分