1、八年级(上)数学期末复习卷 班级 座号 姓名 成绩 一、填空:(每题2分,共24分)1单项式的系数是 ,次数是 . 2假设函数,当2时,3,那么当2时, . 3(3,2)与点Q关于原点对称,那么点Q在第 象限. 4请写出一个图象经过点(1,4)的函数解析式: .5因式分解: .6某班50名学生在数学测试中,分数段在90100分的频率为0.1,那么该班在这个分数段的学生有 人. 7在ABC中,边AB、AC的垂直平分线相交于P点,那么线段PA、PB、PC的大小关系是 . 8等腰三角形的一个角是70,那么其余两角为 .9如图,在ABC中,C90,B15,AB的垂直平分线交BC于点D,交AB于点E,D
2、B10,那么AC .10下面四个图形中,从几何图形的性质考虑,哪一个与其它三个不同?请指出这个图形,并简述你的理由答:图形 ;理由是 .11方程组的解是一次函 数 与一次函数 图象的交点坐标,该坐标为 .12多项式 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是 (要求写三个)二、选择:(每题2分,共16分)13以下运算中,正确的选项是( )ABCD14下面运算正确的选项是( )ABCD15如图是某个地区居民文化程度统计图,以下说法错误的选项是( )A初中文化程度的人最多B本科文化程度的人最少C表示“专科扇形的圆心角为19D高中文化程度的人数占总数的30%16小亮在镜中
3、看到身后墙上的时钟如图,你认为实际时间最接近八点的是( ) ABCDA B C D17函数随自变量的增大而增大,图象与轴交于(4,0),那么0时,的取值范围是( )A4B0C4D018如图,在边长为的正方形(图)中挖掉一个边长为的小正方形(),把余下的局部拼成一个长方形(图),通过计算两个阴影局部的面积,验证了一个等式那么这个等式是( )A BC D19在直角坐标系中,O为坐标原点,点A(1,1),在轴上确定 点P,使AOP为等腰三角形,那么符合条件的点P的个数共有( )A1个B2个C3个D4个20如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数.如:,因此,4,12,2
4、0都是“神秘数.以下四个数中“神秘数是( )A.2023 B.2023 C.2023 三、计算:(每题4分,共8分)21因式分解:;22计算: 四、(每题5分,共10分)23先化简,再求值:,其中,24.阅读以下因式分解的过程,再答复所提出的问题:(1)上述分解因式的方法是 ,共应用了 次;(2)假设分解,那么需应用上述方法 次,结果是 ;(3)分解因式(n为正整数) 五、(每题6分,共24分)25如图,在ABC中,点D在AB上,点E在BC上,BDBE(1)请你再添加一个条件,使得BEABDC,并给出证明你添加的条件是: (2)根据你添加的条件,再写出图中的一对全等三角形 (只要求写出一对全等
5、三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程) 26以下列图是根据某市2023年12月1日至6日最高气温所绘制的条形统计图 (1)观察统计图,写出两条你从这个统计图中获得的信息;(2)请根据图中提供的数据,绘制折线统计图;(3)如果要反映这六天最高气温的变化,采用条形统计图还是折线统计图更好,为什么? 27如图,在ABC中,DE是AC的垂直平分线,ABC与ABD的周长分别为18cm和12cm,求线段AE的长28如图,ABC和ABC关于直线MN对称,ABC和ABC关于直线EF对称. (1)画出直线EF;(2)直线MN与EF相交于点O,试探究BOB与直线MN、EF所夹锐角的数
6、量关系五、(8分)29 如图,等腰ABC和等腰ACD有一条公共边AC,且顶角BAC和顶角CAD都是45将一块三角板中用含45角的顶点与A点重合,并将三角板绕A点按逆时针方向旋转(1)当三角板旋转到如图的位置时,三角板的两边与等腰三角形的两底边分别相交于M、N两点,求证:AMAN;(2)当三角板旋转到如图的位置时,三角板的两边与等腰三角形两底边的延长线分别相交于M、N两点,(1)的结论还成立吗?请简要说明理由 六、(10分)30如图,直线与轴交于A点,与轴交于B点,点M的坐标为(4,0),点P(,)是第一象限内直线AB上的动点,连接OP、MP. 设OPM的面积为s(1)求s关于的函数表达式,并求
7、的取值范围;(2)当P点在什么位置时,图中存在与OPM全等的三角形?画出所有符合条件的示意图,并说明全等的理由(不能添加其他字母和其他辅助线);图1(3)在(2)的条件下,求P点坐标参考答案5,六次;23; 3四;4略;5;65;7PAPBPC; 855、55或70、40; 95;10,不是轴对称图形; 11,(3,0);12;13B;14B;15C;16D;17A;18A.;19D;20D;21; 22; 23,8020;24略;25略;26(1)(2) 略,(3)折线统计图,因为折线统计图能更好表示温度变化情况; 273cm; 28(1)略(2);29略;30(1)S,08(2)当BOPMOP或PMOA时,OPMAPM证明略 (3)P点坐标为(,)和(4,2).