1、2023年良存中学九年级(上)数学半期考模拟卷班级 姓名 座号 总分 一、选择题(每题3分,共30分)1假设二次根式在实数范围内有意义,那么的取值范围是( )A B C D2化简的结果是( )A B C D3方程x2+x=0的解为( )A0 B-1 C0或-1 D1或-14不解方程,判断一元二次方程的两个根的符号为( )A一正一负 B两根都为负 C两根都为正 D不能确定 5在,中最简二次根式的个数是( )A1个 B2个 C3个 D4个6以下列图形是中心对称图形的是 ( )A B C D7半径为5cm的圆内有两条弦ABCD,且AB=6cm,CD=8cm,那么AB、CD间的距离为( )A1cm B
2、7cm C1cm 或7cm D不能确定 第8题图8如图,四边形ABCD是正方形,ADE绕着点A旋转900后到达ABF的位置,连接EF,那么AEF的形状是 ( )A等腰三角形 B直角三角形 C等腰直角三角形 D等边三角形9用配方法解方程时,原方程应变形为( )A BCD PABCO10:如图,点P为O外一点,PA、PB切O于A、B两点,假设P=,那么C的度数为( )A B C D二、填空题(每题3分,共24分)11计算第10题图12假设,那么13是一元二次方程的解,那么14如图,在网格图中,A(1,1)、B(1,3)、C(3,5),那么ABC的外接圆的圆心坐标为 ABC第18题图第15题图第17
3、题图第14题图15如图,COD是AOB绕点O顺时针方向旋转42后所得的图形,点C恰好在AB上,AOD90,那么D 度。 16由于市场的迅速成长,某品牌的手提为了赢得消费者,在半年之内连续降价两次,从4980元降到3699元。这两次降价的百分率相同,假设设这个百分率为,那么根据题意可列出方程 17在两个同心圆中,大圆的弦AB是小圆的切线,且AB=6,那么这个圆环的面积为 。18如图,ABC中,C90,CDEF是正方形,假设AE=3,BE=2,那么图中阴影局部的面积为 。三、计算(每题5分,共20分)1、2、3、4、四、解方程(每题7分,共28分)1、2、3、4、班级 姓名 座号 五、尺规作图(6
4、分)作出右图中残轮的圆心(不写作法,但要保存作图痕迹)六、在直径为650mm的圆柱形油槽内装入一些油后,截面如下列图,假设油面宽AB=600mm,求油的最大深度。(10分)BAO七、阅读下面的例题:(10分)解不等式0解:000与同号分两种情况讨论02(2) 与同负时,即 解得2或 请参照例题解不等式0八、应用题(10分)某商店经销一种销售本钱为30元/kg的海鲜产品。据市场调查,假设按40元/kg销售,一个月能售出1500kg;销售单价每降1元,月销售量就会增加400 kg。商店经理方案既要使月销售利润到达17500元,又要使价格对顾客更具有吸引力,那么销售单价应定为多少?(1)假设定价为每千克元,那么每千克的利润为 元,此时的月销售量为 千克。(2)请根据以上信息,解应用题。九、(12分)如图,在平面直角坐标系中,A、B两点的坐标分别为A(-2,0)、B(8,0),以AB为直径的半圆P与Y轴交于点M,以AB为一边作正方形ABCD(1)求C、M两点的坐标;(2)连接CM,试判断直线CM是否与P相切,并说明你的理由;(3)在X轴上是否存在一点Q,使QMC的周长最小?假设存在,求出点Q的坐标;假设不存在,请说明理由。EM8-2OPD