ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.79MB ,
资源ID:21808      下载积分:9 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/21808.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届江苏省南通市天星湖中学高考仿真模拟数学试卷(含解析).doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届江苏省南通市天星湖中学高考仿真模拟数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,,则a,b,c的大小关系是( )ABCD2已知向量,且,则等于( )A4B3C2D13若直线与曲线相切,则( )A3BC2D4从抛物线上一点 (点在轴上方)引抛物线准线的垂线

2、,垂足为,且,设抛物线的焦点为,则直线的斜率为( )ABCD5定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则( )ABf(sin3)f(cos3)CDf(2020)f(2019)6已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD7执行如图的程序框图,若输出的结果,则输入的值为( )ABC3或D或8已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD9设是两条不同的直线,是两个不同的平面,则下列命题正确的是( )A若,则B若,则C若,则D若,则

3、10甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD11马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D612已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换

4、后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为_.14已知集合,则_.15已知为等比数列,是它的前项和.若,且与的等差中项为,则_.16设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值18(12分)已知非零实数满足 (1)求证:; (2)是否存在实数

5、,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由19(12分)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,PCD为正三角形,平面PCD平面ABCD,E为PC的中点 (1)证明:AP平面EBD;(2)证明:BEPC20(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值22(10分)在平面直角坐标系中,直线的

6、参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()设直线与曲线交于,两点,求;()若点为曲线上任意一点,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题2、D【答

7、案解析】由已知结合向量垂直的坐标表示即可求解【题目详解】因为,且,则故选:【答案点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题3、A【答案解析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【题目详解】设切点为,由得,代入得,则,故选A.【答案点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.4、A【答案解析】根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【题目详解】设点的坐标为,由题意知,焦点,准线方

8、程,所以,解得,把点代入抛物线方程可得,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【答案点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.5、B【答案解析】根据函数的周期性以及x3,2的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【题目详解】由f(x+2)f(x),得f(x)是周期函数且周期为2,先作出f(x)在x3,2时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,所以,选项A错误;选项B,因为,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),选项B正确;选项C,所以,即,选项C

9、错误;选项D,选项D错误.故选:B.【答案点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.6、C【答案解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【题目详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【答案点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为

10、中档题7、D【答案解析】根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【题目详解】因为,所以当,解得,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为或3,故选:D.【答案点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.8、A【答案解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【题目详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【答案点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一

11、般性题目.9、C【答案解析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【题目详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,但,错误;对于,由,知:,又,正确;对于,设,则当为内与平行的直线时,错误.故选:.【答案点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.10、B【答案解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为

12、,故选:B.【答案点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.11、C【答案解析】模拟程序的运行即可求出答案【题目详解】解:模拟程序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循环体,p3,S7,输出S的值为7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【答案点睛】本题主要考查程序框图,属于基础题12、A【答案解析】分析:首先

13、需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可

14、取值会分析是多少,利用期望公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角【题目详解】取的中点E,连AE, ,易证,为异面直线与所成角,设等边三角形边长为,易算得在故答案为【答案点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求14、【答案解析】根据交集的定义即可写出答案。【题目详解】,故填【答案点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。15、【答案解析】设

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2