1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若,,则a,b,c的大小关系是( )ABCD2已知向量,且,则等于( )A4B3C2D13若直线与曲线相切,则( )A3BC2D4从抛物线上一点 (点在轴上方)引抛物线准线的垂线
2、,垂足为,且,设抛物线的焦点为,则直线的斜率为( )ABCD5定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则( )ABf(sin3)f(cos3)CDf(2020)f(2019)6已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为( )ABCD7执行如图的程序框图,若输出的结果,则输入的值为( )ABC3或D或8已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD9设是两条不同的直线,是两个不同的平面,则下列命题正确的是( )A若,则B若,则C若,则D若,则
3、10甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD11马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D612已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换
4、后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为_.14已知集合,则_.15已知为等比数列,是它的前项和.若,且与的等差中项为,则_.16设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的导函数的两个零点为和(1)求的单调区间;(2)若的极小值为,求在区间上的最大值18(12分)已知非零实数满足 (1)求证:; (2)是否存在实数
5、,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由19(12分)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,PCD为正三角形,平面PCD平面ABCD,E为PC的中点 (1)证明:AP平面EBD;(2)证明:BEPC20(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值22(10分)在平面直角坐标系中,直线的
6、参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.()设直线与曲线交于,两点,求;()若点为曲线上任意一点,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题2、D【答
7、案解析】由已知结合向量垂直的坐标表示即可求解【题目详解】因为,且,则故选:【答案点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题3、A【答案解析】设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【题目详解】设切点为,由得,代入得,则,故选A.【答案点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.4、A【答案解析】根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【题目详解】设点的坐标为,由题意知,焦点,准线方
8、程,所以,解得,把点代入抛物线方程可得,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【答案点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.5、B【答案解析】根据函数的周期性以及x3,2的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可.【题目详解】由f(x+2)f(x),得f(x)是周期函数且周期为2,先作出f(x)在x3,2时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,所以,选项A错误;选项B,因为,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),选项B正确;选项C,所以,即,选项C
9、错误;选项D,选项D错误.故选:B.【答案点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.6、C【答案解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【题目详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【答案点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为
10、中档题7、D【答案解析】根据逆运算,倒推回求x的值,根据x的范围取舍即可得选项.【题目详解】因为,所以当,解得,所以3是输入的x的值;当时,解得,所以是输入的x的值,所以输入的x的值为或3,故选:D.【答案点睛】本题考查了程序框图的简单应用,通过结果反求输入的值,属于基础题.8、A【答案解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【题目详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【答案点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一
11、般性题目.9、C【答案解析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【题目详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,但,错误;对于,由,知:,又,正确;对于,设,则当为内与平行的直线时,错误.故选:.【答案点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.10、B【答案解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【题目详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为
12、,故选:B.【答案点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.11、C【答案解析】模拟程序的运行即可求出答案【题目详解】解:模拟程序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循环体,p3,S7,输出S的值为7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【答案点睛】本题主要考查程序框图,属于基础题12、A【答案解析】分析:首先
13、需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可
14、取值会分析是多少,利用期望公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角【题目详解】取的中点E,连AE, ,易证,为异面直线与所成角,设等边三角形边长为,易算得在故答案为【答案点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求14、【答案解析】根据交集的定义即可写出答案。【题目详解】,故填【答案点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题。15、【答案解析】设