ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.80MB ,
资源ID:21811      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/21811.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届衡阳市第八中学高考数学三模试卷(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届衡阳市第八中学高考数学三模试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,则,的大致图象大致是的( )ABCD2已知是虚数单位,若,则( )AB2CD103设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A或11B或11CD4已知双曲

2、线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD5定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能6已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD7不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD8过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,若,则的最小值是( )A1B2C3D49已知函数为奇函数,且,则( )A2B5C1D310如图,网格纸上小正

3、方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD11若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,212若ab0,0c1,则AlogaclogbcBlogcalogcbCacbc Dcacb二、填空题:本题共4小题,每小题5分,共20分。13设,则_.14如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为_.15已知函数,则函数的极大值为 _16在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1

4、7(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值19(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.20(12分)已知是公比为的无穷等比数列,其前项和为

5、,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答21(12分)已知椭圆经过点,离心率为(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称连接求证:存在实数,使得成立22(10分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D

6、和选项C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【答案点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.2、C【答案解析】根据复数模的性质计算即可.【题目详解】因为,所以,故选:C【答案点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.3、A【答案解析】圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长

7、公式得,解得或,故选A4、A【答案解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【题目详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【答案点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.5、B【答案解析】由已知可求得函数的周期,根据周

8、期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【题目详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【答案点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键6、D【答案解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【题目详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等

9、边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【答案点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题7、A【答案解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【答案点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.8、C【答案解析】设直线AB的方程为,代入得:,由根与系数的关系得,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【题目详解】

10、根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【答案点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.9、B【答案解析】由函数为奇函数,则有,代入已知即可求得.【题目详解】.故选:.【答案点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.10、C【答案解析】画

11、出几何体的直观图,利用三视图的数据求解几何体的表面积即可【题目详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【答案点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键11、B【答案解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2,+)上单调递减,故选B.12、B【答案解析】试题分析:对于选项A,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选

12、项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题:本题共4小题,每小题5分,共20分。13、121【答案解析】在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【题目详解】令,得,令,得,两式相加,得,所以.故答案为:.【答案点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.

13、14、【答案解析】要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角【题目详解】取的中点E,连AE, ,易证,为异面直线与所成角,设等边三角形边长为,易算得在故答案为【答案点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求15、【答案解析】对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【题目详解】,故解得, ,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【答案点睛

14、】本题考查函数极值的求解,难点是要通过赋值,求出未知量.16、1【答案解析】由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值【题目详解】的二项展开式的中,只有第5项的二项式系数最大,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【答案解析】(1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【题目详解】解:(1)由已知,得

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2