收藏 分享(赏)

2023届衡阳市第八中学高考数学三模试卷(含解析).doc

上传人:la****1 文档编号:21811 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.80MB
下载 相关 举报
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第1页
第1页 / 共19页
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第2页
第2页 / 共19页
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第3页
第3页 / 共19页
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第4页
第4页 / 共19页
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第5页
第5页 / 共19页
2023届衡阳市第八中学高考数学三模试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,则,的大致图象大致是的( )ABCD2已知是虚数单位,若,则( )AB2CD103设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A或11B或11CD4已知双曲

2、线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD5定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是( )ABCD以上情况均有可能6已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD7不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD8过抛物线的焦点F作两条互相垂直的弦AB,CD,设P为抛物线上的一动点,若,则的最小值是( )A1B2C3D49已知函数为奇函数,且,则( )A2B5C1D310如图,网格纸上小正

3、方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD11若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,212若ab0,0c1,则AlogaclogbcBlogcalogcbCacbc Dcacb二、填空题:本题共4小题,每小题5分,共20分。13设,则_.14如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为_.15已知函数,则函数的极大值为 _16在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1

4、7(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值19(12分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.20(12分)已知是公比为的无穷等比数列,其前项和为

5、,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答21(12分)已知椭圆经过点,离心率为(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称连接求证:存在实数,使得成立22(10分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D

6、和选项C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【答案点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.2、C【答案解析】根据复数模的性质计算即可.【题目详解】因为,所以,故选:C【答案点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.3、A【答案解析】圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长

7、公式得,解得或,故选A4、A【答案解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【题目详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【答案点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.5、B【答案解析】由已知可求得函数的周期,根据周

8、期及偶函数的对称性可求在上的单调性,结合三角函数的性质即可比较【题目详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【答案点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键6、D【答案解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【题目详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等

9、边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【答案点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题7、A【答案解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【答案点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.8、C【答案解析】设直线AB的方程为,代入得:,由根与系数的关系得,从而得到,同理可得,再利用求得的值,当Q,P,M三点共线时,即可得答案.【题目详解】

10、根据题意,可知抛物线的焦点为,则直线AB的斜率存在且不为0,设直线AB的方程为,代入得:.由根与系数的关系得,所以.又直线CD的方程为,同理,所以,所以.故.过点P作PM垂直于准线,M为垂足,则由抛物线的定义可得.所以,当Q,P,M三点共线时,等号成立.故选:C.【答案点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.9、B【答案解析】由函数为奇函数,则有,代入已知即可求得.【题目详解】.故选:.【答案点睛】本题考查奇偶性在抽象函数中的应用,考查学生分析问题的能力,难度较易.10、C【答案解析】画

11、出几何体的直观图,利用三视图的数据求解几何体的表面积即可【题目详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱长为2,该几何体的表面积:故选C【答案点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键11、B【答案解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2,+)上单调递减,故选B.12、B【答案解析】试题分析:对于选项A,而,所以,但不能确定的正负,所以它们的大小不能确定;对于选项B,,,两边同乘以一个负数改变不等号方向,所以选

12、项B正确;对于选项C,利用在第一象限内是增函数即可得到,所以C错误;对于选项D,利用在上为减函数易得,所以D错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题:本题共4小题,每小题5分,共20分。13、121【答案解析】在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得所求.【题目详解】令,得,令,得,两式相加,得,所以.故答案为:.【答案点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.

13、14、【答案解析】要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角【题目详解】取的中点E,连AE, ,易证,为异面直线与所成角,设等边三角形边长为,易算得在故答案为【答案点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求15、【答案解析】对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【题目详解】,故解得, ,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【答案点睛

14、】本题考查函数极值的求解,难点是要通过赋值,求出未知量.16、1【答案解析】由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值【题目详解】的二项展开式的中,只有第5项的二项式系数最大,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【答案解析】(1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【题目详解】解:(1)由已知,得

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2