ImageVerifierCode 换一换
格式:PPT , 页数:32 ,大小:1.90MB ,
资源ID:3266790      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3266790.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.4正态分布.ppt)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2.4正态分布.ppt

1、2.4 正态分布,引例1,100个产品尺寸的频率分布直方图,25.235,25.295,25.355,25.415,25.475,25.535,产品 尺寸(mm),频率组距,引例2,200个产品尺寸的频率分布直方图,25.235,25.295,25.355,25.415,25.475,25.535,产品 尺寸(mm),频率组距,样本容量增大时频率分布直方图,频率组距,产品 尺寸(mm),总体密度曲线,产品 尺寸(mm),总体密度曲线,高尔顿板,11,总体密度曲线,0,Y,X,导入,产品尺寸的总体密度曲线就是或近似地是以下函数的图象:,1、正态曲线的定义:,函数,式中的实数、(0)是参数,分别表

2、示总体的平均数与标准差,称f(x)的图象称为正态曲线,若用X表示落下的小球第1次与高尔顿板底部接触时的坐标,则X是一个随机变量.X落在区间(a,b的概率为:,2.正态分布的定义:,如果对于任何实数 ab,随机变量X满足:,则称为X服从正态分布.记作 X N(,2),(1)正态分布密度曲线,(2)正态分布由参数、唯一确定:变量X的期望(平均值):变量X的标准差,的意义,产品 尺寸(mm),总体平均数反映总体随机变量的,平均水平,x3,x4,x=,总体平均数反映总体随机变量的,平均水平,总体标准差反映总体随机变量的,集中与分散的程度,s的意义,正态密度曲线的函数表示式,当=0,=1时,标准正态密度

3、曲线的函数表示式,正态总体的函数表示式,=,重点一:熟记正态分布的函数表达式及正态曲线的特点,例1、下列函数是正态密度函数的是()A.B.C.D.,B,重点一:熟记正态分布的函数表达式及正态曲线的特点,练习1、若标准正态总体的函数为(1)f(x)是_函数(填奇,偶);(2)f(x)的最大值为_;(3)利用指数函数的性质说明f(x)的增减性。,练习2:,1、若一个正态分布的概率函数是一个偶函数且该函数的最大值等于,该正态分布的概率密度函数的解析式为_。,具有两头低、中间高、左右对称的基本特征,重点二:正态曲线的性质,(1)曲线在x轴的上方,与x轴不相交.,(2)曲线是单峰的,它关于直线x=对称.

4、,(4)曲线与x轴之间的面积为1,(3)曲线在x=处达到峰值(最高点),重点二:正态曲线的性质,(6)当一定时,曲线的形状由确定.越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.,(5)当 x时,曲线下降.并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.,重点二:正态曲线的性质,练习:已知(均数相等),下列三个图像,请在对应图像上填上.,=?,=0,=0.5,=1,或=2,重点三、正态曲线下的面积规律,X轴与正态曲线所夹面积恒等于1。对称区域面积相等。,S(-,-X),S(X,)S(-,-X),正态曲线下的面积规律,对称区域面积相等。,S

5、(-x1,-x2),-x1-x2 x2 x1,S(x1,x2)=S(-x2,-x1),4、特殊区间的概率:,若XN,则对于任何实数a0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小,落在区间 的概率越大,即X集中在 周围概率越大。,特别地有,例1、若XN(5,1).求:,(1)P(X5)(2)P(3X6)(3)P(3X7)(4)P(6X7),我们从上图看到,正态总体在 以外取值的概率只有4.6,在 以外取值的概率只有0.3。,由于这些概率值很小(一般不超过5),通常称这些情况发生为小概率事件。,例4、在某次数学考试中,考生的成绩 服从一个正态分布

6、,即 N(90,100).(1)试求考试成绩 位于区间(70,110)上的概率是多少?(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?,练习:1、已知一次考试共有60名同学参加,考生的成绩X,据此估计,大约应有57人的分数在下列哪个区间内?()(90,110 B.(95,125 C.(100,120 D.(105,115,C,2、已知XN(0,1),则X在区间 内取值的概率等于()A.0.9544 B.0.0456 C.0.9772 D.0.02283、设离散型随机变量XN(0,1),则=,=.4、若XN(5,1),求P(6X7).,D,0.5,0.9544,方差相等、均数不等的正态分布图示,=0.5,=-1,=0,=1,若 固定,随 值的变化而沿x轴平移,故 称为位置参数;,均数相等、方差不等的正态分布图示,=1,=0,若 固定,大时,曲线矮而胖;小时,曲线瘦而高,故称 为形状参数。,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2