ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:1.98MB ,
资源ID:35634      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/35634.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年浙江省台州市重点中学高考数学一模试卷(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年浙江省台州市重点中学高考数学一模试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数,若在上有且仅有5个零点,则的取值范围为( )ABCD2设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件3中国古代中的“

2、礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A408B120C156D2404函数的一个零点在区间内,则实数a的取值范围是( )ABCD5 若数列满足且,则使的的值为( )ABCD6已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD7已知复数满足:,则的共轭复数为( )ABCD8函数

3、在的图像大致为ABCD9陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD10设(是虚数单位),则( )AB1C2D11在区间上随机取一个实数,使直线与圆相交的概率为( )ABCD12已知复数,(为虚数单位),若为纯虚数,则()AB2CD二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足对任意,则数列的通项公式_.14已知,若,则a的取值范围是_15已知为等比数列,是它的前项和.若,且与的等差中项为,则_.16设,则_

4、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在; 这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足_,求的面积.18(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,(单位:百米).(1)分别求,关于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.19(12分)在平面直角坐标系中,以原点O为极点,x轴的正半

5、轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为4sin(+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求MON的面积.20(12分)如图,在直棱柱中,底面为菱形,与相交于点,与相交于点.(1)求证:平面;(2)求直线与平面所成的角的正弦值.21(12分)设椭圆E:(a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由22(10分)在三棱柱中

6、,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.【题目详解】当时,在上有且仅有5个零点,.故选:A.【答案点睛】本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.2、C【答案解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【题目详解】由“”,得,得或或,即或或,由,得,故“”是“”

7、的必要不充分条件,故选C【答案点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题3、A【答案解析】利用间接法求解,首先对6门课程全排列,减去“乐”排在第一节的情况,再减去“射”和“御”两门课程相邻的情况,最后还需加上“乐”排在第一节,且“射”和“御”两门课程相邻的情况;【题目详解】解:根据题意,首先不做任何考虑直接全排列则有(种),当“乐”排在第一节有(种),当“射”和“御”两门课程相邻时有(种),当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),故选:【答案点睛】本题考

8、查排列、组合的应用,注意“乐”的排列对“射”和“御”两门课程相邻的影响,属于中档题4、C【答案解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【题目详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【答案点睛】本题考查零点存在性定理的应用,属于基础题.5、C【答案解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C6、B【答案解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,

9、化简得.构造函数,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【答案点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.7、B【答案解析】转化,为,利用复数的

10、除法化简,即得解【题目详解】复数满足:所以 故选:B【答案点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题.8、B【答案解析】由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果【题目详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C又排除选项D;,排除选项A,故选B【答案点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择本题较易,注重了基础知识、基本计算能力的考查9、C【答案解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【题目详解】最上面圆锥的母线长为,底面周长

11、为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【答案点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.10、A【答案解析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【题目详解】,故选:A【答案点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题11、D【答案解析】利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【题目详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【答

12、案点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.12、C【答案解析】把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可【题目详解】,为纯虚数,解得故选C【答案点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用累加法求得数列的通项公式,由此求得的通项公式.【题目详解】由题,所以故答案为:【答案点睛】本小题主要考查累加法求数列的通项公式,属于基础题.14、【答案解析】函数等价为,由二次函数的单调性可得在R上递增,即为,可得a的不等式,解不等式即

13、可得到所求范围【题目详解】,等价为,且时,递增,时,递增,且,在处函数连续,可得在R上递增,即为,可得,解得,即a的取值范围是故答案为:【答案点睛】本题考查分段函数的单调性的判断和运用:解不等式,考查转化思想和运算能力,属于中档题15、【答案解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【题目详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【答案点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.16、121【答案解析】在所给的等式中令,,令,可得2个等式,再根据所得的2个等式即可解得

14、所求.【题目详解】令,得,令,得,两式相加,得,所以.故答案为:.【答案点睛】本题主要考查二项式定理的应用,考查学生分析问题的能力,属于基础题,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、横线处任填一个都可以,面积为【答案解析】无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积【题目详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填写“”.解:由及正弦定理,得.又,所以有.因为,所以.从而有.又,所以由余弦定理及,得即.将代入,解得.所以.在横线上填写“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2