ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:308.22KB ,
资源ID:576774      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/576774.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年届大纲版数学高考名师一轮复习教案107相互独立事件同时发生的概率microsoftword文档doc高中数学.docx)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年届大纲版数学高考名师一轮复习教案107相互独立事件同时发生的概率microsoftword文档doc高中数学.docx

1、10.7相互独立事件同时发生的概率一、明确复习目标1.了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率.2.会计算事件在n次独立重复试验中恰好发生次的概率.二建构知识网络1相互独立事件:事件(或)是否发生对事件(或)发生的概率没有影响,这样的两个事件叫做相互独立事件.假设与是相互独立事件,那么与,与,与也相互独立.3相互独立事件同时发生的概率:事件相互独立, 2.互斥事件与相互独立事件是有区别的:互斥事件与相互独立事件研究的都是两个事件的关系,但而互斥的两个事件是一次实验中的两个事件,相互独立的两个事件是在两次试验中得到的,注意区别。如果A、B相互独立,那么P(A+B)

2、=P(A)+P(B)P(AB)如:某人射击一次命中的概率是0.9,射击两次,互不影响,至少命中一次的概率是0.9+0.9-0.90.9=0.99,(也即1-0.10.1=0.99)4.独立重复试验的定义:在同样条件下进行的各次之间相互独立的一种试验.6独立重复试验的概率公式:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率:.k=n时,即在n次独立重复试验中事件A全部发生,概率为Pn(n)=Cnnpn(1p)0 =pnk=0时,即在n次独立重复试验中事件A没有发生,概率为Pn()=Cn0p0(1p)n =(1p)n三、双基题目练练手1.从应届高中生中选出飞

3、行员,这批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一学生,那么该生三项均合格的概率为(假设三项标准互不影响) ( )A.B.C.D.2 (2023天津)某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为 ( )A B C D3.(2022辽宁)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是 ( )A. p1p2B.p1(1p2)+p2(1p1)C.1p1p2D.1(1p1)(1p2)4. (2023湖北)接种某疫苗后,出现发热反响的概率为0.80.现有5人接种该疫

4、苗,至少有3人出现发热反响的概率为_.(精确到0.01)5.一道数学竞赛试题,甲生解出它的概率为,乙生解出它的概率为,丙生解出它的概率为,由甲、乙、丙三人独立解答此题只有一人解出的概率为_.6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_.简答:1-3.CAB; 4. 0.94; 5.P=+ + =.6.P=(1)(1)=.四、经典例题做一做【例1】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为求:()甲恰好击中目标2次的概率;()乙至少击中目标2次的概率

5、;()乙恰好比甲多击中目标2次的概率.解:(I)甲恰好击中目标2次的概率为(II)乙至少击中目标2次的概率为(III)设乙恰好比甲多击中目标2次为事件A,乙恰好击中目标2次且甲恰好击中目标0次为事件B1,乙恰好击中目标3次且甲恰好击中目标1次为事件B2,那么A=B1+B2,B1,B2为互斥事件. P(A)=P(B1)+P(B2) 所以,乙恰好比甲多击中目标2次的概率为【例2】(2023浙江)甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.两甲,乙两袋中各任取2个球.()假设n=3,求取到的4个球全是红球的概率;()假设取到的4个球中至少有2个红球的概

6、率为,求n.解:(I)记“取到的4个球全是红球为事件.(II)记“取到的4个球至多有1个红球为事件,“取到的4个球只有1个红球为事件,“取到的4个球全是白球为事件.由题意,得 所以,化简,得 解得,或(舍去),故 .【例3】(2023四川)某课程考核分理论与实验两局部进行,每局部考核成绩只记“合格与“不合格,两局部考核都“合格那么该课程考核“合格 甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9 所有考核是否合格相互之间没有影响 ()求甲、乙、丙三人在理论考核中至少有两人合格的概率;()求这三人该课程考核都合格的概率(结果保存

7、三位小数) 解:记“甲理论考核合格为事件;“乙理论考核合格为事件;“丙理论考核合格为事件;记为的对立事件,;记“甲实验考核合格为事件;“乙实验考核合格为事件;“丙实验考核合格为事件;()记“理论考核中至少有两人合格为事件,记为的对立事件解法1: 解法2:所以,理论考核中至少有两人合格的概率为()记“三人该课程考核都合格 为事件 所以,这三人该课程考核都合格的概率为【例4】一个元件能正常工作的概率叫做这个元件的可靠性,设构成系统的每个元件的可A1A2A3B1B2B3A1B1A2A3B3B2()()靠性为P(0P1,且每个元件能否正常工作是相互独立的。今有6个元件按图所示的两种联接方式构成两个系统

8、()、(),试分别求出它们的可靠性,并比较它们可靠性的大小。解:系统()有两个道路,它们能正常工作当且仅当两条道路至少有一条能正常工作,而每条道路能正常工作当且仅当它的每个元件能正常工作。系统()每条道路正常工作的概率是P3,不能工作的概率是1P3,系统()不能工作的概率为(1P3)2。故系统()正常工作的概率是P1=1(1P3)2=P3(2P3);系统()有3对并联元件串联而成,它能正常工作,当且仅当每对并联元件都能正常工作,由于每对并联元件不能工作的概率为(1P)2,因而每对并联元件正常工作的概率是1(1P)2, 故系统()正常工作的概率是:P2=1(1P)23=P3(2P)3。又P1P2

9、= P3(2P3)P3(2P)3=6P3(P1)20,P1P2,故系统()的可靠性大。思维点拨:此题的根本思路是从正反两个方面加以分析,先求出每个系统的可靠性再进行比较.【研讨.欣赏】甲、乙两个乒乓球运发动进行乒乓球比赛,每局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以用三局二胜或五局三胜制,问在哪一种比赛制度下,甲获胜的可能性较大?解:(1)如果采用三局二胜制,那么甲在以下两种情况获胜A12:0(甲净胜两局);A22:1(前两局各胜一局,第三局甲胜)因A1与A2互斥,故甲获胜的概率为(2)如果采用五局三胜制,那么甲在以下三种情况下获胜:B13:0(甲净胜三局);B23:1(前三局甲胜两

10、局,负一局,第四局甲胜);B33:2(前四局中甲、乙各胜两局,第五局甲胜)因此甲胜的概率为由(1)、(2)的结果知,甲在五局三胜制中获胜的可能性更大五提炼总结以为师1.正确理解概念,能准确判断是否相互独立事件,只有对于相互独立事件A与B来说,才能运用公式P(AB)=P(A)P(B).2.对于复杂的事件要能将其分解为互斥事件的和或独立事件的积,或先计算对立事件.3.善于发现或将问题化为n次独立重复试验问题,进而计算发生k次的概率.同步练习 10.7相互独立事件同时发生的概率 【选择题】1(2022年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么

11、恰好有1人解决这个问题的概率是A.p1p2B.p1(1p2)+p2(1p1)C.1p1p2D.1(1p1)(1p2)2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,那么这段时间内两地都下雨的概率是 ( )A.0.12 B.0.88C.0.28 D.0.423.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值为 ( )A.0B.1C.2D.3【填空题】4.某学生参加一次选拔考试,有5道题,每题10分.他解题的正确率为,假设40分为最低分数线,那么该生被选中的概率是_.5.甲、乙两人在罚球线投球命中的概率

12、分别为,甲、乙两人在罚球线各投球二次,这四次中至少一次命中的概率是_.6. 把n个不同的球随机地放入编号为1,2,m的m个盒子内,那么1号盒恰有r个球的概率等于_.简答.提示:1-3.BDC; 3.由C()k()5k=C()k+1()5k1,即C=C,k+(k+1)=5,k=2; 4.他须解对5题或4题.P=()5+C()4(1)=; 5.; 6.法一:放1个球,被放入1号盒的概率为P=.n个球放入m个不同的盒子内相当于做n次独立重复试验. Pn(r)=C()r(1)nr=.法二:把n个不同的球任意放入m个不同的盒子内共有mn个等可能的结果.其中1号盒内恰有r个球的结果数为C(m1)nr,故所

13、求概率P(A)=.【解答题】7(2023北京)某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是,且三门课程考试是否及格相互之间没有影响.()分别求该应聘者用方案一和方案二时考试通过的概率;()试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由) 解:记该应聘者对三门指定课程考试及格的事件分别为A,B,C. 那么P(A)= a,P(B)= b,P(C)= c()应聘者用方案一考试通过的概率 应聘者用方案二考试通过的概率 ()因为a

14、,b,c0, 1,所以 故p1p2, 即采用第一种方案,该应聘者考试通过的概率较大.8. 假设每一架飞机引擎在飞行中故障率为1P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为平安?分析:4引擎飞机可以看作4次独立重复试验,要能正常运行,即求发生k次(k2)的概率.同理,2引擎飞机正常运行的概率即是2次独立重复试验中发生k次(k1)的概率,由此建立不等式求解.解:4引擎飞机成功飞行的概率为CP2(1P)2+CP3(1P)+CP4=6P2(1P)2+4P3(1P)+P4.2引擎飞机成功飞行的概率为CP(1P)+CP2=2P(1P)+P2.要使4引擎飞机比2引擎飞机平安,只要6P2(1P)2+4P3(1P)+P42P(1P)+P2.化简,分解因式得(P1)2(3P2)0.所以3P20,即得P.答:当引擎不出故障的概率不小于时,4引擎飞机比2引擎飞机平安.99粒种子分种在甲、

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2