1、近世代数期末考试模拟试卷及答案班别_ 姓名_ 成绩_要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。5、考生禁止携带手机、耳麦等通讯器材。否则,视为为作弊。6、不可以使用普通计算器等计算工具。一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、设G 有6个元素的循环群,a是生成元,则G的子集(
2、 )是子群。A、 B、 C、 D、2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( )A、a*b=a-bB、a*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、设、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=( )A、 B、 C、 D、5、任意一个具有2个或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交换群二、填空题(本大题共10小题,每空3分,共
3、30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、凯莱定理说:任一个子群都同一个-同构。2、一个有单位元的无零因子-称为整环。3、已知群中的元素的阶等于50,则的阶等于-。4、a的阶若是一个有限整数n,那么G与-同构。5、A=1.2.3 B=2.5.6 那么AB=-。6、若映射既是单射又是满射,则称为-。7、叫做域的一个代数元,如果存在的-使得。8、是代数系统的元素,对任何均成立,则称为-。9、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、-。10、一个环R对于加法来作成一个循环群,则P是-。三、解答题(本大题共3小题,每小题10分,共30
4、分)1、设集合A=1,2,3G是A上的置换群,H是G的子群,H=I,(1 2),写出H的所有陪集。2、设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?3、a=493, b=391, 求(a,b), a,b 和p, q。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若是群,则对于任意的a、bG,必有惟一的xG使得a*xb。2、设m是一个正整数,利用m定义整数集Z上的二元关系:ab当且仅当mab。近世代数模拟试题 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)。1、C;2、D;3、B;4、B
5、;5、A;二、填空题(本大题共10小题,每空3分,共30分)。1、变换群;2、交换环;3、25;4、模n乘余类加群;5、2;6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H的3个右陪集为:I,(1 2),(1 2 3 ),(1 3),(1 3 2 ),(2 3 )H的3个左陪集为:I,(1 2) ,(1 2 3 ),(2 3),(1 3 2 ),(1 3 )2、答:(E,)不是群,因为(E,)中无单位元。3、解 方法一、辗转相除法。列以下算式:a=b+102b=3102+85102=185+17 由此得
6、到 (a,b)=17, a,b=ab/17=11339。然后回代:17=102-85=102-(b-3102)=4102-b=4(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明 设e是群的幺元。令xa1*b,则a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若xG也是a*xb的解,则xe*x(a1*a)*xa1*(a*x)a1*bx。所以,xa1*b是a*xb的惟一解。2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为a=xZ;m
7、xa或者也可记为,称之为模m剩余类。若mab也记为ab(m)。当m=2时,Z2仅含2个元:0与1。近世代数模拟试题一、 单项选择题1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。A、 B、 C、 D、2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( )A、a*b=a-bB、a*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、设、是三个置换,其中=(12)(23)(13),=(24)(14),=(13
8、24),则=( )A、 B、 C、 D、5、任意一个具有2个或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、凯莱定理说:任一个子群都同一个-同构。2、一个有单位元的无零因子-称为整环。3、已知群中的元素的阶等于50,则的阶等于-。4、a的阶若是一个有限整数n,那么G与-同构。5、A=1.2.3 B=2.5.6 那么AB=-。6、若映射既是单射又是满射,则称为-。7、叫做域的一个代数元,如果存在的-使得。8、是代数系统的元素,对任何均成立,则称为-。9、有限群
9、的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、-。10、一个环R对于加法来作成一个循环群,则P是-。三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A=1,2,3G是A上的置换群,H是G的子群,H=I,(1 2),写出H的所有陪集。2、 设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?3、 a=493, b=391, 求(a,b), a,b 和p, q。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若是群,则对于任意的a、bG,必有惟一的xG使得a*xb
10、。2、设m是一个正整数,利用m定义整数集Z上的二元关系:ab当且仅当mab。近世代数模拟试题 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)。1、C;2、D;3、B;4、B;5、A;二、填空题(本大题共10小题,每空3分,共30分)。1、变换群;2、交换环;3、25;4、模n乘余类加群;5、2;6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H的3个右陪集为:I,(1 2),(1 2 3 ),(1 3),(1 3 2 ),(2 3 )H的3个左陪集为:I,(1 2) ,(1 2 3 ),(
11、2 3),(1 3 2 ),(1 3 )2、答:(E,)不是群,因为(E,)中无单位元。3、解 方法一、辗转相除法。列以下算式:a=b+102b=3102+85102=185+17 由此得到 (a,b)=17, a,b=ab/17=11339。然后回代:17=102-85=102-(b-3102)=4102-b=4(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明 设e是群的幺元。令xa1*b,则a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若xG也是a*xb的解,则xe*x(a1*a)*xa1*(a*x)a1*bx。所以,xa1*b是a*xb的惟一解。2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为a=xZ;mxa或者也可记为,称之为模m剩余类。若mab也记为ab(m)。当m=2时,Z2仅含2个元:0与1。