ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:92.66KB ,
资源ID:89561      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/89561.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大学数学近世代数期末模拟试题练习与答案.docx)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

大学数学近世代数期末模拟试题练习与答案.docx

1、近世代数期末考试模拟试卷及答案班别_ 姓名_ 成绩_要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。5、考生禁止携带手机、耳麦等通讯器材。否则,视为为作弊。6、不可以使用普通计算器等计算工具。一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、设G 有6个元素的循环群,a是生成元,则G的子集(

2、 )是子群。A、 B、 C、 D、2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( )A、a*b=a-bB、a*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、设、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=( )A、 B、 C、 D、5、任意一个具有2个或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交换群二、填空题(本大题共10小题,每空3分,共

3、30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、凯莱定理说:任一个子群都同一个-同构。2、一个有单位元的无零因子-称为整环。3、已知群中的元素的阶等于50,则的阶等于-。4、a的阶若是一个有限整数n,那么G与-同构。5、A=1.2.3 B=2.5.6 那么AB=-。6、若映射既是单射又是满射,则称为-。7、叫做域的一个代数元,如果存在的-使得。8、是代数系统的元素,对任何均成立,则称为-。9、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、-。10、一个环R对于加法来作成一个循环群,则P是-。三、解答题(本大题共3小题,每小题10分,共30

4、分)1、设集合A=1,2,3G是A上的置换群,H是G的子群,H=I,(1 2),写出H的所有陪集。2、设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?3、a=493, b=391, 求(a,b), a,b 和p, q。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若是群,则对于任意的a、bG,必有惟一的xG使得a*xb。2、设m是一个正整数,利用m定义整数集Z上的二元关系:ab当且仅当mab。近世代数模拟试题 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)。1、C;2、D;3、B;4、B

5、;5、A;二、填空题(本大题共10小题,每空3分,共30分)。1、变换群;2、交换环;3、25;4、模n乘余类加群;5、2;6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H的3个右陪集为:I,(1 2),(1 2 3 ),(1 3),(1 3 2 ),(2 3 )H的3个左陪集为:I,(1 2) ,(1 2 3 ),(2 3),(1 3 2 ),(1 3 )2、答:(E,)不是群,因为(E,)中无单位元。3、解 方法一、辗转相除法。列以下算式:a=b+102b=3102+85102=185+17 由此得

6、到 (a,b)=17, a,b=ab/17=11339。然后回代:17=102-85=102-(b-3102)=4102-b=4(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明 设e是群的幺元。令xa1*b,则a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若xG也是a*xb的解,则xe*x(a1*a)*xa1*(a*x)a1*bx。所以,xa1*b是a*xb的惟一解。2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为a=xZ;m

7、xa或者也可记为,称之为模m剩余类。若mab也记为ab(m)。当m=2时,Z2仅含2个元:0与1。近世代数模拟试题一、 单项选择题1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。A、 B、 C、 D、2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是可结合的?( )A、a*b=a-bB、a*b=maxa,b C、 a*b=a+2b D、a*b=|a-b|4、设、是三个置换,其中=(12)(23)(13),=(24)(14),=(13

8、24),则=( )A、 B、 C、 D、5、任意一个具有2个或以上元的半群,它( )。A、不可能是群B、不一定是群C、一定是群 D、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、凯莱定理说:任一个子群都同一个-同构。2、一个有单位元的无零因子-称为整环。3、已知群中的元素的阶等于50,则的阶等于-。4、a的阶若是一个有限整数n,那么G与-同构。5、A=1.2.3 B=2.5.6 那么AB=-。6、若映射既是单射又是满射,则称为-。7、叫做域的一个代数元,如果存在的-使得。8、是代数系统的元素,对任何均成立,则称为-。9、有限群

9、的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、-。10、一个环R对于加法来作成一个循环群,则P是-。三、解答题(本大题共3小题,每小题10分,共30分)1、设集合A=1,2,3G是A上的置换群,H是G的子群,H=I,(1 2),写出H的所有陪集。2、 设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么?3、 a=493, b=391, 求(a,b), a,b 和p, q。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、若是群,则对于任意的a、bG,必有惟一的xG使得a*xb

10、。2、设m是一个正整数,利用m定义整数集Z上的二元关系:ab当且仅当mab。近世代数模拟试题 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)。1、C;2、D;3、B;4、B;5、A;二、填空题(本大题共10小题,每空3分,共30分)。1、变换群;2、交换环;3、25;4、模n乘余类加群;5、2;6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环;三、解答题(本大题共3小题,每小题10分,共30分)1、解:H的3个右陪集为:I,(1 2),(1 2 3 ),(1 3),(1 3 2 ),(2 3 )H的3个左陪集为:I,(1 2) ,(1 2 3 ),(

11、2 3),(1 3 2 ),(1 3 )2、答:(E,)不是群,因为(E,)中无单位元。3、解 方法一、辗转相除法。列以下算式:a=b+102b=3102+85102=185+17 由此得到 (a,b)=17, a,b=ab/17=11339。然后回代:17=102-85=102-(b-3102)=4102-b=4(a-b)-b=4a-5b.所以 p=4, q=-5.四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明 设e是群的幺元。令xa1*b,则a*xa*(a1*b)(a*a1)*be*bb。所以,xa1*b是a*xb的解。若xG也是a*xb的解,则xe*x(a1*a)*xa1*(a*x)a1*bx。所以,xa1*b是a*xb的惟一解。2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为a=xZ;mxa或者也可记为,称之为模m剩余类。若mab也记为ab(m)。当m=2时,Z2仅含2个元:0与1。

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2