1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知非零向量、,若且,则向量在向量方向上的投影为( )ABCD2是的( )条件A充分不必要B必要不充分C充要D既不充分也不必要3已知椭圆:的左,右焦点分别为,过的直线交椭圆于,
2、两点,若,且的三边长,成等差数列,则的离心率为( )ABCD4曲线上任意一点处的切线斜率的最小值为( )A3B2CD15设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分不必要条件6已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD7已知向量,是单位向量,若,则( )ABCD8在平面直角坐标系中,已知角的顶点与原点重合,始边与轴的非负半轴重合,终边落在直线上,则( )ABCD9复数()ABC0D10已知为虚数单位,实数满足,则 ( )A1BCD11设正项等比数列的前n项和为,若,则公比
3、( )AB4CD212已知圆关于双曲线的一条渐近线对称,则双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,其中为虚数单位,则的模为_.14如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x轴上,且=, 那么椭圆的方程是 15已知是第二象限角,且,则_.16已知函数,则曲线在处的切线斜率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.18(12分)已知
4、椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由19(12分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.20(12分)如图,在四棱锥中,底面是菱形,是边长为2的正三角形,为线段的中点(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积21(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平
5、面DEM,求的值22(10分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设非零向量与的夹角为,在等式两边平方,求出的值,进而可求得向量在向量方向上的投影为,即可得解.【题目详解】,由得,整理得,解得,因此,向量在向量方向上的投影为.故选:D.【答案点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.2、B【答案解析】利用充分条件、必
6、要条件与集合包含关系之间的等价关系,即可得出。【题目详解】设对应的集合是,由解得且 对应的集合是 ,所以,故是的必要不充分条件,故选B。【答案点睛】本题主要考查充分条件、必要条件的判断方法集合关系法。设 ,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。3、C【答案解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【题目详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,离心率.故选:C【答案点睛】本小题
7、主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.4、A【答案解析】根据题意,求导后结合基本不等式,即可求出切线斜率,即可得出答案.【题目详解】解:由于,根据导数的几何意义得:,即切线斜率,当且仅当等号成立,所以上任意一点处的切线斜率的最小值为3.故选:A.【答案点睛】本题考查导数的几何意义的应用以及运用基本不等式求最值,考查计算能力.5、A【答案解析】试题分析:, bm又直线a在平面内,所以ab,但直线不一定相交,所以“”是“ab”的充分不必要条件,故选A.考点:充分条件、必要条件.6、D【答案解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公
8、式,求出e.【题目详解】由题意得,.故选:D.【答案点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.7、C【答案解析】设,根据题意求出的值,代入向量夹角公式,即可得答案;【题目详解】设,是单位向量,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【答案点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.8、C【答案解析】利用诱导公式以及二倍角公式,将化简为关于的形式,结合终边所在的直线可知的值,从而可求的值.【题目详解】因为,且,所以.故选:C.【答案点睛】本题考查三角函数中的诱导
9、公式以及三角恒等变换中的二倍角公式,属于给角求值类型的问题,难度一般.求解值的两种方法:(1)分别求解出的值,再求出结果;(2)将变形为,利用的值求出结果.9、C【答案解析】略10、D【答案解析】 ,则 故选D.11、D【答案解析】由得,又,两式相除即可解出【题目详解】解:由得,又,或,又正项等比数列得,故选:D【答案点睛】本题主要考查等比数列的性质的应用,属于基础题12、C【答案解析】将圆,化为标准方程为,求得圆心为.根据圆关于双曲线的一条渐近线对称,则圆心在渐近线上,.再根据求解.【题目详解】已知圆,所以其标准方程为:,所以圆心为.因为双曲线,所以其渐近线方程为,又因为圆关于双曲线的一条渐
10、近线对称,则圆心在渐近线上,所以.所以.故选:C【答案点睛】本题主要考查圆的方程及对称性,还有双曲线的几何性质 ,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用复数模的计算公式求解即可.【题目详解】解:由,得,所以.故答案为:.【答案点睛】本题考查复数模的求法,属于基础题.14、【答案解析】由题意可设椭圆方程为:短轴的一个端点与两焦点组成一正三角形,焦点在轴上又,椭圆的方程为,故答案为考点:椭圆的标准方程,解三角形以及解方程组的相关知识15、【答案解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【题目详解】解:由是第二象
11、限角,且,可得,由,可得,代入,可得,故答案为:.【答案点睛】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.16、【答案解析】求导后代入可构造方程求得,即为所求斜率.【题目详解】,解得:,即在处的切线斜率为.故答案为:.【答案点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【答案解析】(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与
12、平面法向量夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.【题目详解】(1)证明:因为,所以,即.又因为,所以,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,.设,代入上式得,所以.设平面的一个法向量为,由,得.令,得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【答案点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于
13、平面法向量夹角的余弦值,要注意结合图形分析.18、(1) (1)不存在,理由见解析【答案解析】(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【题目详解】(1)由题意,可得解得则,故椭圆的方程为(1)当直线的斜率不存在时,不符合题意当的斜率存在时,设的方程为,联立得,设,则,即设,则,则,即,整理得,此方程无解,故的方程不存在综上所述,不存在直线使得【答案点睛】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19、(1)或;(2)【答案解析】(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【题目详解】(1)当时,原不等式可化为.当时,则,所以;当时,则,所以;当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【答案点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.20、(1)见解析; (2