1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的展开式中,满足的的系数之和为( )ABCD2某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD3已知、分别是双曲线的左、右焦点,过作双曲线的一条渐
2、近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )ABCD4已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD5若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于( )ABC2或D2或6在展开式中的常数项为A1B2C3D77已知平面向量,满足,且,则( )A3BCD58已知是双曲线的左、右焦点,是的左、右顶点,点在过且斜率为的直线上,为等腰三角形,则的渐近线方程为( )ABCD9某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最高气温平均值与最低气温平均值总体呈正相
3、关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势10如图所示的程序框图,若输入,则输出的结果是( )ABCD11如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( ) ABCD12甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D5二、填空题:本题共4小题,每小题5分
4、,共20分。13已知集合,则_14已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为_.15已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_16若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:为的重心;当时,平面;当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普
5、通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.18(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.19(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求的面积20(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.21(12分)金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生新
6、生接待其实也是和社会沟通的一个平台校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:愿意不愿意男生6020女士4040(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为,写出的分布列,并求附:,其中0.050.010.0013.8416.63510.82822(10分)设数列是公差不为零的等差数列,其前项和为,若,成等比数列(1)求及;(2)设,设数列的前项和
7、,证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】,有,三种情形,用中的系数乘以中的系数,然后相加可得【题目详解】当时,的展开式中的系数为当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为故选:B【答案点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键2、A【答案解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【题目详解】水费开支占总开支的百分比为.故选:A【答案
8、点睛】本题考查折线图与柱形图,属于基础题.3、B【答案解析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【题目详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【答案点睛】本题考查双曲线离心率的计算,解答的关键就是得出、的等量关系,考查计算能力,属于中等题.4、C【答案解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意
9、知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【答案点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.5、C【答案解析】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【题目详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴
10、,又可在轴上,所以或,或.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.6、D【答案解析】求出展开项中的常数项及含的项,问题得解。【题目详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【答案点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。7、B【答案解析】先求出,再利用求出,再求.【题目详解】解:由,所以,故选:B【答案点睛】考查向量的数量积及向量模的运算,是基础题.8、D【答案解析】根据为等腰三角形,可求出点P的坐标,又由的斜率为可得出关系,即可求出渐近线斜率得解.【题目详解】如
11、图,因为为等腰三角形,所以,,,又,解得,所以双曲线的渐近线方程为,故选:D【答案点睛】本题主要考查了双曲线的简单几何性质,属于中档题.9、D【答案解析】根据折线图依次判断每个选项得到答案.【题目详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【答案点睛】本题考查了折线图,意在
12、考查学生的理解能力.10、B【答案解析】列举出循环的每一步,可得出输出结果.【题目详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【答案点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.11、A【答案解析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的半径,最后可求出球的体积【题目详解】如图,设三棱柱为,且,高所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为设球心为,则由球的几何知识得为直角三角形,且,所以,即球的
13、半径为,所以球的体积为故选A【答案点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率12、B【答案解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.
14、 二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【题目详解】,.故答案为:.【答案点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.14、【答案解析】由圆柱外接球的性质,即可求得结果.【题目详解】解:由于圆柱的高和球半径均为2,,则球心到圆柱底面的距离为1,设圆柱底面半径为,由已知有,即圆柱的底面半径为.故答案为:.【答案点睛】本题考查由圆柱的外接球的性质求圆柱底面半径,属于基础题.15、-1【答案解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【题目详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4