1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知直线和平面,若,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D不充分不必要2执行如图所示的程序框图,则输出的( )A2B3CD3设,满足约束条件,则的最大值是( )ABCD4已知命题:“关于的方程有实根”,若为真命
2、题的充分不必要条件为,则实数的取值范围是( )ABCD5 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)6已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )ABCD7执行如图所示的程序框图,则输出的结果为( )ABCD8已知函数的定义域为,则函数的定义域为( )ABCD9已知为定义在上的奇函数,且满足当时,则( )ABCD10过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为( )A BCD11如图,四边形为平行四边形,为
3、中点,为的三等分点(靠近)若,则的值为( )ABCD12函数的定义域为()A,3)(3,+) B(-,3)(3,+)C,+) D(3,+)二、填空题:本题共4小题,每小题5分,共20分。13若向量满足,则实数的取值范围是_.14已知x,y满足约束条件,则的最小值为_15过动点作圆:的切线,其中为切点,若(为坐标原点),则的最小值是_16在正方体中,已知点在直线上运动,则下列四个命题中:三棱锥的体积不变;当为中点时,二面角 的余弦值为;若正方体的棱长为2,则的最小值为;其中说法正确的是_(写出所有说法正确的编号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.
4、(1)若,求实数的取值范围;(2)证明:,恒成立.18(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.19(12分)设函数.()讨论函数的单调性;()如果对所有的0,都有,求的最小值;()已知数列中,且,若数列的前n项和为,求证:.20(12分)已知,(其中).(1)求;(2)求证:当时,21(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.22(10分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围2023学
5、年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【题目详解】,不能确定还是,当时,存在,由又可得,所以“”是“”的必要不充分条件,故选:B【答案点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.2、B【答案解析】运行程序,依次进行循环,结合判断框,可得输出值.【题目详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,
6、循环结束,输出,故选:B【答案点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.3、D【答案解析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值【题目详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【答案点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.4、B【答案解析】命题p:,为,又为真命题的充分不必要条件为,故5、C【答案解析】利用终边相同的角的公式判断即得正确答案.【题目详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混
7、用,所以只有答案C正确.故答案为C【答案点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.6、B【答案解析】由抛物线的定义转化,列出方程求出p,即可得到抛物线方程【题目详解】由抛物线y22px(p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【答案点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题7、D【答案解析】循环依次为 直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括
8、选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8、A【答案解析】试题分析:由题意,得,解得,故选A考点:函数的定义域9、C【答案解析】由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【题目详解】由题意,则函数的周期是,所以,又函数为上的奇函数,且当时,所以,.故选:C.【答案点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.10、C【答案解析】联立方程解得M(3,),根据MNl得|MN|MF|4,得到MNF是边长为4的等边三角形,计算距离得到答
9、案.【题目详解】依题意得F(1,0),则直线FM的方程是y(x1)由得x或x3.由M在x轴的上方得M(3,),由MNl得|MN|MF|314又NMF等于直线FM的倾斜角,即NMF60,因此MNF是边长为4的等边三角形点M到直线NF的距离为故选:C.【答案点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.11、D【答案解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【题目详解】解:,又解得,所以故选:D【答案点睛】本题考查了平面向量的基本定理及其意义,属于基础题12、A【答案解析】根据幂函数的定义域与分母不为零列不等式组求解即可.【题目详解】因为函数,解得且
10、;函数的定义域为, 故选A【答案点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据题意计算,解得答案.【题目详解】,故,解得.故答案为:.【答案点睛】本题考查了向量的数量积,意在考查学生的计算能力.14、【答案解析】先根据约束条件画出可行域,再由表示直线在y轴上的截距最大即可得解.【题目详解】x,y满足约束条件,画出可行域如图所示.目标函数,即.平移直线,
11、截距最大时即为所求.点A(,),z在点A处有最小值:z2,故答案为:.【答案点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法15、【答案解析】解答:由圆的方程可得圆心C的坐标为(2,2),半径等于1.由M(a,b),则|MN|2=(a2)2+(b2)212=a2+b24a4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b24a4b+7=a2+b2.整理得:4a+4b7=0.a,b满足的关系为:4a+4b7=0.求|MN|的最小值,就是求|MO|的最小值在直线4a+4b7=0上取一点到原点距离最小,由“垂线段最短”得,直线OM垂直
12、直线4a+4b7=0,由点到直线的距离公式得:MN的最小值为: .16、【答案解析】,平面,得出上任意一点到平面的距离相等,所以判断命题;由已知得出点P在面上的射影在上,根据线面垂直的判定和性质或三垂线定理,可判断命题;当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,运用二面角的空间向量求解方法可求得二面角的余弦值,可判断命题;过作平面交于点,做点关于面对称的点,使得点在平面内,根据对称性和两点之间线段最短,可求得当点在点时,在一条直线上,取得最小值.可判断命题.【题目详解】,平面,所以上任意一点到平面的距离相等,所以三棱锥的体积不变,所以正确;在直线上运动时,点P在面上的射影在上,
13、所以DP在面上的射影在上,又,所以,所以正确;当为中点时,以点D为坐标原点,建立空间直角系,如下图所示,设正方体的棱长为2.则:,所以,设面的法向量为,则,即,令,则,设面的法向量为, ,即, ,由图示可知,二面角 是锐二面角,所以二面角的余弦值为,所以不正确;过作平面交于点,做点关于面对称的点,使得点在平面内,则,所以,当点在点时,在一条直线上,取得最小值. 因为正方体的棱长为2,所以设点的坐标为,所以,所以,又所以,所以,故正确.故答案为:.【答案点睛】本题考查空间里的线线,线面,面面关系,几何体的体积,在求解空间里的两线段的和的最小值,仍可以运用对称的思想,两点之间线段最短进行求解,属于难度题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【题目详解】(1),即当时,不等式化为,当时,不等式化为,此时无解当时,不等式化为,综上,原不等式的解集为(2)要证,恒成立即证,恒成立的最小值为2,只需证,即证又成立,原题得证【答案点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归