1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在明代程大位所著的算法统宗中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主
2、愿赔偿,牛马羊吃得异样马吃了牛的一半,羊吃了马的一半”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同马吃的青苗是牛的一半,羊吃的青苗是马的一半问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )ABCD2已知函数的部分图象如图所示,则( )ABCD3函数的一个零点在区间内,则实数a的取值范围是( )ABCD4已知平面,直线满足,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件5已知函数,满足对任意的实数,都有成立,则实
3、数的取值范围为( )ABCD6命题“”的否定为( )ABCD7函数在上的图象大致为( )A B C D 8设,则关于的方程所表示的曲线是( )A长轴在轴上的椭圆B长轴在轴上的椭圆C实轴在轴上的双曲线D实轴在轴上的双曲线9九章算术“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图: 记为每个序列中最后一列数之和,则为( )A147B294C882D176410已知抛物线的焦点为,准线为,
4、是上一点,是直线与抛物线的一个交点,若,则( )AB3CD211已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD12百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表
5、示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知的终边过点,若,则_14将一颗质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的的概率是_15已知等比数列的各项都是正数,且成等差数列,则=_16已知是抛物线的焦点,过作直线与相交于两点,且在第一象限,若,则直线的斜率
6、是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,()求角的大小;()若,求的值18(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积19(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.20(12分)在四棱锥中,底面是边长为2的菱形,是的中点(1)证明:平面;(2)设是线段上的动点,当点到平面距离最大时,求三棱锥的体积21(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三
7、角形绕底边上的高所在直线旋转180而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.22(10分)在如图所示的四棱锥中,四边形是等腰梯形,平面,. (1)求证:平面;(2)已知二面角的余弦值为,求直线与平面所成角的正弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,结合等比数列的性质可求出答案.【题目详解】设羊户赔粮升,马户
8、赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,.故选:D.【答案点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.2、A【答案解析】先利用最高点纵坐标求出A,再根据求出周期,再将代入求出的值.最后将代入解析式即可.【题目详解】由图象可知A1,所以T,.f(x)sin(2x+),将代入得)1,结合0,.sin.故选:A.【答案点睛】本题考查三角函数的据图求式问题以及三角函数的公式变换.据图求式问题要注意结合五点法作图求解.属于中档题.3、C【答案解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【题目详解】由题,显然函数在区间内连续,因为
9、的一个零点在区间内,所以,即,解得,故选:C【答案点睛】本题考查零点存在性定理的应用,属于基础题.4、A【答案解析】,是相交平面,直线平面,则“” “”,反之,直线满足,则或/或平面,即可判断出结论【题目详解】解:已知直线平面,则“” “”,反之,直线满足,则或/或平面, “”是“”的充分不必要条件故选:A.【答案点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力5、B【答案解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值范围.【题目详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【答案点睛】本
10、题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.6、C【答案解析】套用命题的否定形式即可.【题目详解】命题“”的否定为“”,所以命题“”的否定为“”.故选:C【答案点睛】本题考查全称命题的否定,属于基础题.7、C【答案解析】根据函数的奇偶性及函数在时的符号,即可求解.【题目详解】由可知函数为奇函数.所以函数图象关于原点对称,排除选项A,B;当时,排除选项D,故选:C.【答案点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题.8、C【答案解析】根据条件,方程即,结合双曲线的标准方程的特征判断曲
11、线的类型【题目详解】解:k1,1+k0,k2-10,方程,即,表示实轴在y轴上的双曲线,故选C【答案点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键9、A【答案解析】根据题目所给的步骤进行计算,由此求得的值.【题目详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【答案点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.10、D【答案解析】根据抛物线的定义求得,由此求得的长.【题目详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【答案点睛】本小题主要考查抛物线
12、的定义,考查数形结合的数学思想方法,属于基础题.11、C【答案解析】在等比数列中,由即可表示之间的关系.【题目详解】由题可知,等比数列中,且公比为2,故故选:C【答案点睛】本题考查等比数列求和公式的应用,属于基础题.12、A【答案解析】由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【题目详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【答案点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.二、填空题:本
13、题共4小题,每小题5分,共20分。13、【答案解析】由题意利用任意角的三角函数的定义,求得的值【题目详解】的终边过点,若, 即答案为-2.【答案点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.14、【答案解析】先求出基本事件总数6636,再由列举法求出“点数之和等于6”包含的基本事件的个数,由此能求出“点数之和等于6”的概率【题目详解】基本事件总数6636,点数之和是6包括共5种情况,则所求概率是故答案为【答案点睛】本题考查古典概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用15、【答案解析】根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的
14、化简即可求解.【题目详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【答案点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.16、【答案解析】作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率【题目详解】设是准线,过作于,过作于,过作于,如图,则,直线斜率为故答案为:【答案点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离,用平面几何方法求解三、解答题:共70分。解答应写出文字