收藏 分享(赏)

2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc

上传人:la****1 文档编号:13348 上传时间:2023-01-06 格式:DOC 页数:20 大小:2.07MB
下载 相关 举报
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第1页
第1页 / 共20页
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第2页
第2页 / 共20页
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第3页
第3页 / 共20页
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第4页
第4页 / 共20页
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第5页
第5页 / 共20页
2023届上海市浦东实验高三第二次联考数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD2在中,分别为,的中点,为上的任一点,实数,满足,设、的面积分别为、,记(),则取到最大值时,的值为( )A1B1CD3 “角谷猜想”的内容是:对于任意一个大于

2、1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )A6B7C8D94已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5复数满足 (为虚数单位),则的值是()ABCD6已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD7设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,则B若,,则C若,则D若,则8在中,则在方向上的投影是( )A4B3C-4D-39德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于的级数展开式,该

3、公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有割圆密率捷法一书,为我国用级数计算开创了先河.如图所示的程序框图可以用莱布尼兹“关于的级数展开式”计算的近似值(其中P表示的近似值),若输入,则输出的结果是( )ABCD10已知双曲线的右焦点为为坐标原点,以为直径的圆与双 曲线的一条渐近线交于点及点,则双曲线的方程为( )ABCD11已知函数的最小正周期为,为了得到函数的图象,只要

4、将的图象()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度12若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13若变量,满足约束条件则的最大值是_.14在平行四边形中,已知,若,则_15记为数列的前项和.若,则_.16若实数满足不等式组则目标函数的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.

5、18(12分)已知数列的前项和为,且满足(1)求数列的通项公式;(2)若,且数列前项和为,求的取值范围19(12分)已知函数()求在点处的切线方程;()求证:在上存在唯一的极大值;()直接写出函数在上的零点个数20(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的正弦值21(12分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有22(10分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12

6、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【题目详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【答案点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.2、D【答案解析】根据三角形中位线的性质,可得到的距离等于的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【题目详解】如图所示:因为是的中位线,所以

7、到的距离等于的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【答案点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.3、B【答案解析】模拟程序运行,观察变量值可得结论【题目详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【答案点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论4、B【答案解析】结合函数的对应

8、性,利用充分条件和必要条件的定义进行判断即可【题目详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【答案点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题5、C【答案解析】直接利用复数的除法的运算法则化简求解即可【题目详解】由得:本题正确选项:【答案点睛】本题考查复数的除法的运算法则的应用,考查计算能力6、A【答案解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【题目详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【答案点睛】本题考查双曲线的简单性质的应用,构建出的

9、关系是解题的关键,考查计算能力,属于中档题.7、C【答案解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或【题目详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错误;在B中,若,则或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【答案点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题8、D【答案解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,又,在方向上的投影是:,故选D.点睛:本题考查了平面向

10、量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.9、B【答案解析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【题目详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【答案点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、C【答案解析】根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【题目详解】由双曲线

11、,则渐近线方程:, 连接,则,解得,所以,解得.故双曲线方程为.故选:C【答案点睛】本题考查了双曲线的几何性质,需掌握双曲线的渐近线求法,属于中档题.11、A【答案解析】由的最小正周期是,得,即,因此它的图象向左平移个单位可得到的图象故选A考点:函数的图象与性质【名师点睛】三角函数图象变换方法:12、B【答案解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案 是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词

12、)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。二、填空题:本题共4小题,每小题5分,共20分。13、9【答案解析】做出满足条件的可行域,根据图形,即可求出的最大值.【题目详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【答案点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.14、【答案解析】设,则,得到,利用向量的数量积的运算,即可求解【

13、题目详解】由题意,如图所示,设,则,又由,所以为的中点,为的三等分点,则,所以【答案点睛】本题主要考查了向量的共线定理以及向量的数量积的运算,其中解答中熟记向量的线性运算法则,以及向量的共线定理和向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于中档试题15、1【答案解析】由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解【题目详解】由,得,且,则,即数列是以16为首项,以为公比的等比数列,则故答案为:1【答案点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平16、12【答案解析】画出约束条件

14、的可行域,求出最优解,即可求解目标函数的最大值【题目详解】根据约束条件画出可行域,如下图,由,解得目标函数,当过点时,有最大值,且最大值为故答案为:【答案点睛】本题考查线性规划的简单应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【答案解析】(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果; (2).作出函数的图象, 当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【题目详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2