收藏 分享(赏)

内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc

上传人:g****t 文档编号:13683 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.88MB
下载 相关 举报
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第1页
第1页 / 共20页
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第2页
第2页 / 共20页
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第3页
第3页 / 共20页
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第4页
第4页 / 共20页
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第5页
第5页 / 共20页
内蒙古赤峰市红山区赤峰二中2023学年高三下学期联考数学试题(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国古代数学巨著九章算术中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:

2、有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是( )A2B3C4D12如图,在中, ,是上的一点,若,则实数的值为( )ABCD3下列函数中,在定义域上单调递增,且值域为的是( )ABCD4若,则“”的一个充分不必要条件是ABC且D或5已知集合,则集合( )ABCD6射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0

3、.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,结果精确到0.001)A0.110B0.112CD7我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( )ABCD以上都不对8已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD9把满足条件(1),(2),使得的函数称为“D函数”,下列函数是“D函数”的个数为( ) A1个B2个C3个D4个10已知点是抛物线的对称

4、轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为( )ABCD11在复平面内,复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限12已知变量,满足不等式组,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在边长为2的正三角形中,则的取值范围为_.14已知函数的图象在处的切线斜率为,则_15若,则_16如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

5、17(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.18(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性

6、别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.20(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.21(12

7、分)已知函数.()当时,求函数在上的值域;()若函数在上单调递减,求实数的取值范围.22(10分)设函数,(1)当,求不等式的解集;(2)已知,的最小值为1,求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【题目详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,求的值因为,解得,解得故选B【答案点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.

8、2、B【答案解析】变形为,由得,转化在中,利用三点共线可得.【题目详解】解:依题: ,又三点共线,解得故选:【答案点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程: 三点共线 (为平面内任一点,)3、B【答案解析】分别作出各个选项中的函数的图象,根据图象观察可得结果.【题目详解】对于,图象如下图所示:则函数在定义域上不单调,错误;对于,的图象如下图所示:则在定义域上单调递增,且值域为,正确;对于,的图象如下图所

9、示:则函数单调递增,但值域为,错误;对于,的图象如下图所示:则函数在定义域上不单调,错误.故选:.【答案点睛】本题考查函数单调性和值域的判断问题,属于基础题.4、C【答案解析】,当且仅当 时取等号.故“且 ”是“”的充分不必要条件.选C5、D【答案解析】根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【答案点睛】本题考查集合的混合运算,属基础题.6、C【答案解析】根据题意知,,代入公式,求出即可.【题目详解】由题意可得,因为,所以,即.所以这种射线的吸收系数为.故选:C【答案点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性

10、质来研究指数型函数的性质,以及解指数型方程;属于中档题.7、A【答案解析】首先确定不超过的素数的个数,根据古典概型概率求解方法计算可得结果.【题目详解】不超过的素数有,共个,从这个素数中任选个,有种可能;其中选取的两个数,其和等于的有,共种情况,故随机选出两个不同的数,其和等于的概率故选:.【答案点睛】本题考查古典概型概率问题的求解,属于基础题.8、A【答案解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4

11、eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A9、B【答案解析】满足(1)(2)的函数是偶函数且值域关于原点对称,分别对所给函数进行验证.【题目详解】满足(1)(2)的函数是偶函数且值域关于原点对称,不满足(2);不满足(1);不满足(2);均满足(1)(2).故选:B.【答案点睛】本题考查新定义函数的问题,涉及到函数的性质,考查学生逻辑推理与分析能力,是一道容易题.10、B【答案解析】设,利用两点间的距离公式求出的表达式,结合基本不等式的性质求出的最大值时的点坐标,结合椭圆的定义以及椭圆的离心率公

12、式求解即可.【题目详解】设,因为是抛物线的对称轴与准线的交点,点为抛物线的焦点,所以,则,当时,当时,当且仅当时取等号,此时,点在以为焦点的椭圆上,由椭圆的定义得,所以椭圆的离心率,故选B.【答案点睛】本题主要考查椭圆的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:直接求出,从而求出;构造的齐次式,求出;采用离心率的定义以及圆锥曲线的定义来求解11、B【答案解析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【题目详解】对应的点的坐标为在第二象限故选:B.【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表

13、示法及其几何意义,属于基础题.12、B【答案解析】先根据约束条件画出可行域,再利用几何意义求最值.【题目详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【答案点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】建立直角坐标系,依题意可求得,而,故可得,且,由此构造函数,利用二次函数的性质即可求得取值范围【题目详解】建立如图所示的平面直角坐标系,则,设,根据,即,则,即,则,所以,且,故,设,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为故答案

14、为:【答案点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题14、【答案解析】先对函数f(x)求导,再根据图象在(0,f(0)处切线的斜率为4,得f(0)4,由此可求a的值.【题目详解】由函数得,函数f(x)的图象在(0,f(0)处切线的斜率为4,.故答案为4【答案点睛】本题考查了根据曲线上在某点切线方程的斜率求参数的问题,属于基础题15、【答案解析】因为,由二倍角公式得到 ,故得到 故答案为16、【答案解析】画图直观图可得该几何体为棱锥,再计算高求解体积即可.【题目详解】解:如图,是一个

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2