1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD2已知复数满足(其中为的共轭复数),则的值为( )A1B2CD3函数的图象为C,以下结论中正确的是( )图象C关于直线对称;图象C关于点对称;由y =2si
2、n2x的图象向右平移个单位长度可以得到图象C.ABCD4已知抛物线:的焦点为,过点的直线交抛物线于,两点,其中点在第一象限,若弦的长为,则( )A2或B3或C4或D5或5设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD6已知函数(),若函数在上有唯一零点,则的值为( )A1B或0C1或0D2或07若不相等的非零实数,成等差数列,且,成等比数列,则( )ABC2D8已知集合,若,则实数的值可以为( )ABCD9已知集合,则( )ABC或D10已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABC
3、D11已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD12过直线上一点作圆的两条切线,为切点,当直线,关于直线对称时,( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,点是边的中点,则_,_.14已知函数是定义在上的奇函数,且周期为,当时,则的值为_15如图是一个算法伪代码,则输出的的值为_.16已知向量=(4,3),=(6,m),且,则m=_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,的最大值为求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,使得函数在区间上的值域为?若存在,
4、求实数k的取值范围;若不存在,请说明理由18(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.19(12分)函数(1)证明:;(2)若存在
5、,且,使得成立,求取值范围.20(12分)第十三届全国人大常委会第十一次会议审议的固体废物污染环境防治法(修订草案)中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选
6、出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望参考公式:,其中下面的临界值表仅供参考21(12分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.22(10分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:“小爱同学”智能音箱“天猫精灵”
7、智能音箱合计男4560105女554095合计100100200(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?附:0.100.050.0250.010.0050.0012.7063.8415.0246.6357.87910.8282023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】分别以直线为轴,直
8、线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【题目详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【答案点睛】本题考查向量的数量积的坐标表示,属于基础题.2、D【答案解析】按照复数的运算法则先求出,再写出,进而求出.【题目详解】,.故选:D【答案点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.3、B【答案解析】根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【题目详解】因为,又,所以正确.,所以正确.将的图象向右平移个单位长度,得,所以错误.所以正确,错误.故
9、选:B【答案点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.4、C【答案解析】先根据弦长求出直线的斜率,再利用抛物线定义可求出.【题目详解】设直线的倾斜角为,则,所以,即,所以直线的方程为.当直线的方程为,联立,解得和,所以;同理,当直线的方程为.,综上,或.选C.【答案点睛】本题主要考查直线和抛物线的位置关系,弦长问题一般是利用弦长公式来处理.出现了到焦点的距离时,一般考虑抛物线的定义.5、B【答案解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【题目详解】设,则有.又,所以,有.故选B.【答案点睛】本题考查了向量共线及向量运算知识,利用向量共线
10、及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.6、C【答案解析】求出函数的导函数,当时,只需,即,令,利用导数求其单调区间,即可求出参数的值,当时,根据函数的单调性及零点存在性定理可判断;【题目详解】解:(),当时,由得,则在上单调递减,在上单调递增,所以是极小值,只需,即.令,则,函数在上单调递增.,;当时,函数在上单调递减,函数在上有且只有一个零点,的值是1或0.故选:C【答案点睛】本题考查利用导数研究函数的零点问题,零点存在性定理的应用,属于中档题.7、A【答案解析】由题意,可得,消去得,可得,继而得到,代入即得解【题目详解】由,成等差数列,所以,又,成
11、等比数列,所以,消去得,所以,解得或,因为,是不相等的非零实数,所以,此时,所以故选:A【答案点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.8、D【答案解析】由题意可得,根据,即可得出,从而求出结果【题目详解】,且, 的值可以为 故选:D【答案点睛】考查描述法表示集合的定义,以及并集的定义及运算9、D【答案解析】首先求出集合,再根据补集的定义计算可得;【题目详解】解:,解得,.故选:D【答案点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.10、B【答案解析】此题画出正方体模型即可快速判断m的取值.【题目详解】如图(1)恰好有
12、3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【答案点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.11、A【答案解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【题目详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【答案点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查计算能力,属于中档题.12、C【答案解析】判断圆心与直线的关系,确定直线,关于直线对称
13、的充要条件是与直线垂直,从而等于到直线的距离,由切线性质求出,得,从而得【题目详解】如图,设圆的圆心为,半径为,点不在直线上,要满足直线,关于直线对称,则必垂直于直线,设,则,,故选:C【答案点睛】本题考查直线与圆的位置关系,考查直线的对称性,解题关键是由圆的两条切线关于直线对称,得出与直线垂直,从而得就是圆心到直线的距离,这样在直角三角形中可求得角二、填空题:本题共4小题,每小题5分,共20分。13、 2 【答案解析】根据正弦定理直接求出,利用三角形的边表示向量,然后利用向量的数量积求解即可.【题目详解】中,可得因为点是边的中点,所以故答案为:;.【答案点睛】本题主要考查了三角形的解法,向量的数量积的应用,考查计算能力,属于中档题.14、【答案解析】由题意可得:,周期为,可得,可求出,最后再求的值即可.【题目详解】解:函数是定义在上的奇函数,.由周期为,可知,.故答案为:.【答案点睛】本题主要考查函数的基本性质,属于基础题.15、5【答案解析】执行循环结构流程图,即得结果.【题目详解】执行循环结构流程图得,结束循环,输出.【答案点睛】本题考查循环结构流程图,考查基本分析与运算能力,属基础题.16、8.【答