1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD2将函数的图象先向右平移个单位长度,在把所得函数图象的横坐标变为原来的倍,纵坐标不变,得到函数的图象,若函数在上没有零点,则的取值范围是( )ABCD3已知纯虚数满足,其中为虚数单位,则实数等于( )AB1CD24用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形5若实数满足不等式组则的最小值等于( )ABCD6已知集合U1,2,3,4,5,6,A
3、2,4,B3,4,则( )A3,5,6B1,5,6C2,3,4D1,2,3,5,67如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )ABCD8在菱形中,分别为,的中点,则( )ABC5D9已知复数满足,则( )ABCD10如图是一个几何体的三视图,则这个几何体的体积为( )ABCD11在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )ABCD12执行如图所示的程序框图若输入,则输出的的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则目标函数的最小值为_.14函数f(x)x2xlnx的图象在x1处的切线
4、方程为_.15已知 ,则_.16在中,角,的对边分别是,若,则的面积的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列,其前项和为,满足,其中,.若,(),求证:数列是等比数列;若数列是等比数列,求,的值;若,且,求证:数列是等差数列.18(12分)已知函数的图象在处的切线方程是.(1)求的值;(2)若函数,讨论的单调性与极值;(3)证明:.19(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,以椭圆C左顶点T为圆心作圆,设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异
5、于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:为定值.20(12分)万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全列联表;并判断能否有的把握认为该校教职工是否为“冰雪迷”与“性别”有关;(2)在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取
6、2名作冰雪运动知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21(12分)已知数列满足(1)求数列的通项公式;(2)设数列的前项和为,证明:22(10分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在
7、每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【题目详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: , 化简得,即.故选:A【答案点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.2、A【答案解析】根据y=Acos(x+)的图象变换规律,求得g(x)的解析式,根据定义域求出的范围,再利用余弦函数的图象和性质,求得的取值范围【题目详解】函数的图象先向右平移个
8、单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,周期,若函数在上没有零点, , ,解得,又,解得,当k=0时,解,当k=-1时,可得,.故答案为:A.【答案点睛】本题考查函数y=Acos(x+)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.3、B【答案解析】先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【题目详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【答案点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.4、C【答案解析】试题分析:画出截
9、面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论5、A【答案解析】首先画出可行域,利用目标函数的几何意义求的最小值【题目详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【答案点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题6、B【答案解析】按补集、交集定义,即可求解.【题目详解】1,3,5,6,1,2,5,6,所以1,5,6.故选:B.【答案点睛】本题考查集合间的运算,属于基础题.7、D【答案解析】使用不同方法用表
10、示出,结合平面向量的基本定理列出方程解出【题目详解】解:,又解得,所以故选:D【答案点睛】本题考查了平面向量的基本定理及其意义,属于基础题8、B【答案解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【题目详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【答案点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9、A【答案解析】根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【题目详解】
11、由题可知:由,所以所以故选:A【答案点睛】本题主要考查复数的运算,考验计算,属基础题.10、A【答案解析】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1再由球与圆柱体积公式求解【题目详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1则几何体的体积为故选:【答案点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平11、B【答案解析】作出图形,设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,
12、推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【题目详解】如下图所示:设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,平面,平面,平面平面,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,因此,.故选:B.【答案点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位
13、置,考查推理能力与计算能力,属于中等题.12、C【答案解析】由程序语言依次计算,直到时输出即可【题目详解】程序的运行过程为当n=2时,时,此时输出.故选:C【答案点睛】本题考查由程序框图计算输出结果,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.【题目详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为故答案为:-1【答案点睛】本题主要考查线性规划求最值,还考查了数形结合的思想方法,属于基础题.14、xy0.【答案解析】先将x1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【题目详解】由题意得.故切线方程为y1x1,即xy0.故答案为:xy0.【答案点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.15、【答案解析】对原方程两边求导,然后令求得表达式的值.【题目详解】对等式两边求导,得,令,则.【答案点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.16、【答案解析】化简得到,根据余弦定理和均