1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1我国古代数学名著九章算术有一问题:“今有鳖臑(bi na),下广五尺,无袤;上袤四尺,无广;高七尺
2、.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A平方尺B平方尺C平方尺D平方尺2已知过点且与曲线相切的直线的条数有( )A0B1C2D33已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD4定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )ABCD5过圆外一点引圆的两条切线,则经过两切点的直线方程是( )ABCD6已知为坐标原点,角的终边经过点且,则( )ABCD7函数的图象大致是( )ABCD8已知,满足条件(为常数),若目标函数的最大值为9,则( )ABCD9若
3、函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是( )ABCD10已知函数,且,则( )A3B3或7C5D5或811已知函数,满足对任意的实数,都有成立,则实数的取值范围为( )ABCD12设全集集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,且,则实数m的值是_14函数的极大值为_.15数列满足递推公式,且,则_.16已知复数对应的点位于第二象限,则实数的范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列
4、的前项和,求正整数,使得对于任意的均有18(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.19(12分)已知(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围20(12分)根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为;表示全国GDP总量,表中,.326.4741.90310209.7614.05(1)根据数据及统计图表,判断与(其中为自然对数的底数)哪一个更适宜作为全
5、国GDP总量关于的回归方程类型?(给出判断即可,不必说明理由),并求出关于的回归方程.(2)使用参考数据,估计2020年的全国GDP总量.线性回归方程中斜率和截距的最小二乘法估计公式分别为:,.参考数据:45678的近似值551484031097298121(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,求的取值范围.22(10分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。
6、在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据三视图得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【题目详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点, 设球半径为,则,所以外接球的表面积,故选:A【答案点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.2、C【答案解析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导
7、数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程【题目详解】若直线与曲线切于点,则,又,解得,过点与曲线相切的直线方程为或,故选C【答案点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题3、B【答案解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【题目详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率
8、的取值范围是.故选:B【答案点睛】本题考查双曲线的离心率的范围,考查双曲线的性质的应用.4、B【答案解析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【题目详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【答案点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.5、A【答案解析】过圆外一点,
9、引圆的两条切线,则经过两切点的直线方程为,故选6、C【答案解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【题目详解】根据题意,解得,所以,所以,所以.故选:C.【答案点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.7、B【答案解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【题目详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,上单减,.选B.【答案点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.
10、8、B【答案解析】由目标函数的最大值为9,我们可以画出满足条件 件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数的方程组,消参后即可得到的取值【题目详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:故选:【答案点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值9、D【答案解析】由题可知,可转化为曲线与有两个公共点,可转化为方程有两解,
11、构造函数,利用导数研究函数单调性,分析即得解【题目详解】函数的图象上两点,关于直线的对称点在上,即曲线与有两个公共点,即方程有两解,即有两解,令,则,则当时,;当时,故时取得极大值,也即为最大值,当时,;当时,所以满足条件故选:D【答案点睛】本题考查了利用导数研究函数的零点,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.10、B【答案解析】根据函数的对称轴以及函数值,可得结果.【题目详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【答案点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题11、B【答案解析】由题意可知函数为上为减函数
12、,可知函数为减函数,且,由此可解得实数的取值范围.【题目详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【答案点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.12、A【答案解析】先求出,再与集合N求交集.【题目详解】由已知,又,所以.故选:A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】根据即可得出,从而求出m的值【题目详解】解:;m1故答案为:1【答案点睛】本题考查向量垂直的充要
13、条件,向量数量积的坐标运算14、【答案解析】对函数求导,根据函数单调性,即可容易求得函数的极大值.【题目详解】依题意,得.所以当时,;当时,.所以当时,函数有极大值.故答案为:.【答案点睛】本题考查利用导数研究函数的性质,考查运算求解能力以及化归转化思想,属基础题.15、2020【答案解析】可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【题目详解】左右两端同乘以有,从而,将以上式子累加得.由得.令,有.故答案为:2020【答案点睛】本题考查数列递推式和累加法的应用,属于基础题16、【答案解析】由复数对应的点,在第二象限,得,且,从而求出实数的范围【题目详解】解:复数对应的点位于第二象限,且,故答案为:【答案点睛】本题主要考查复数与复平面内对应点之间的关系,解不等式,且 是解题的关键,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)()(2),(3)【答案解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【题目详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以,