1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1近年来,随着网络的普及和智能手机的更新换代,各种方便的相继出世,其功能也是五花八门.某大学为了调查在校大学生使用的主要
2、用途,随机抽取了名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:可以估计使用主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数;可以估计不足的大学生使用主要玩游戏;可以估计使用主要找人聊天的大学生超过总数的.其中正确的个数为( )ABCD2已知集合,,则ABCD3某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比
3、,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同4复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限5已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD6已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )A第一象限B第二象限C第三象限D第四象限7是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD8已知数列满足:)若正整数使得成立,则( )A16B17C18D199已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )与点距离为的点形成
4、一条曲线,则该曲线的长度是;若面,则与面所成角的正切值取值范围是;若,则在该四棱柱六个面上的正投影长度之和的最大值为.ABCD10函数在区间上的大致图象如图所示,则可能是( )ABCD11已知集合,则集合的非空子集个数是( )A2B3C7D812己知全集为实数集R,集合A=x|x2 +2x-80,B=x|log2x0,得x-4或x2,A=x|x2 +2x-80x| x-4或x2,由log2x1,x0,得0x2,B=x|log2x1 x |0x2,则,.故选:D.【答案点睛】本题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.二、填空题:本题共4小题,每小题5分,共2
5、0分。13、【答案解析】先求得复数,再由复数模的计算公式即得.【题目详解】,则.故答案为:【答案点睛】本题考查复数的四则运算和求复数的模,是基础题.14、或【答案解析】用表示出的面积,求得等量关系,联立焦距的大小,以及,即可容易求得,则离心率得解.【题目详解】联立解得.所以的面积,所以.而由双曲线的焦距为知,所以.联立解得或故双曲线的离心率为或.故答案为:或.【答案点睛】本题考查双曲线的方程与性质,考查运算求解能力以及函数与方程思想,属中档题.15、【答案解析】由三角函数图象相位变换后表达函数解析式,再利用三角恒等变换与辅助角公式整理的表达式,进而由三角函数值域求得最大值.【题目详解】将函数的图象向右平移个单位长度后得到函数的图象,则所以,当函数最大,最大值为故答案为:【答案点睛】本题考查表示三角函数图象平移后图象的解析式,还考查了利用三角恒等变换化简函数式并求最值,属于简单题.16、4【答案解析】由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值.【题目详解】,可得,由,则或,即或,由题意得,所以,