收藏 分享(赏)

2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc

上传人:la****1 文档编号:19958 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.71MB
下载 相关 举报
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第1页
第1页 / 共18页
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第2页
第2页 / 共18页
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第3页
第3页 / 共18页
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第4页
第4页 / 共18页
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第5页
第5页 / 共18页
2023届湖北省浠水县实验中学高三(最后冲刺)数学试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若向量,则( )A30B31C32D332已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )ABCD3若双曲线:()的一个焦点为,过点的直线与双曲

2、线交于、两点,且的中点为,则的方程为( )ABCD4函数(其中是自然对数的底数)的大致图像为( )ABCD5已知函数则函数的图象的对称轴方程为( )ABCD6已知函数满足:当时,且对任意,都有,则( )A0B1C-1D7已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则8设是定义在实数集上的函数,满足条件是偶函数,且当时,则,的大小关系是( )ABCD9双曲线的一条渐近线方程为,那么它的离心率为( )ABCD10某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:5557596168646259808898956073887

3、48677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D1211已知数列满足,且成等比数列.若的前n项和为,则的最小值为( )ABCD12已知角的终边经过点P(),则sin()=ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_14已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_15一次考试后,某班全班50个人数学成绩的平均分为正数

4、,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_16一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:18(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数

5、,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.19(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.20(12分)已知a0,证明:121(12分)如图,已知四棱锥的底面是等腰梯形,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.22(10分)已知数列是等差数列,前项和为,且,(1)求(2)设,求数列的前项和2023学年模拟测试

6、卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先求出,再与相乘即可求出答案.【题目详解】因为,所以.故选:C.【答案点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.2、B【答案解析】由三视图可知,该三棱锥如图, 其中底面是等腰直角三角形,平面,结合三视图求出每个面的面积即可.【题目详解】由三视图可知,该三棱锥如图所示:其中底面是等腰直角三角形,平面,由三视图知,因为,所以,所以,因为为等边三角形,所以,所以该三棱锥的四个面中,最大面积为.故选:B【答案点睛】本题考查三视图还原

7、几何体并求其面积; 考查空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.3、D【答案解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【题目详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【答案点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.4、D【答案解

8、析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,图象关于原点对称, 故选D.5、C【答案解析】,将看成一个整体,结合的对称性即可得到答案.【题目详解】由已知,令,得.故选:C.【答案点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.6、C【答案解析】由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【答案点睛】本题考查了分段函数和函数周期的应用,属于基础题.7、C【答案解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【题目详解】A

9、:当时,也可以满足,b,故本命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【答案点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8、C【答案解析】y=f(x+1)是偶函数,f(-x+1)=f(x+1),即函数f(x)关于x=1对称当x1时,为减函数,f(log32)=f(2-log32)= f()且=log34,log343,bac,故选C9、D【答案解析】根据双曲线的一条渐近线方程为,列出方程,求出的值即可.【题目详解】双曲线的一条渐近线方程为,可得,双曲

10、线的离心率.故选:D.【答案点睛】本小题主要考查双曲线离心率的求法,属于基础题.10、D【答案解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【题目详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【答案点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.11、D【答案解析】利用等比中项性质可得等差数列的首项,进而求得,再利用二次函数的性质,可得当或时,取到最小值.【题目详解】根据题意,可知为等差数列,公差,由成等比数列,可得,解得.根据单调性,可知当或时,取到最小值,最小值为.故

11、选:D.【答案点睛】本题考查等差数列通项公式、等比中项性质、等差数列前项和的最值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意当或时同时取到最值.12、A【答案解析】由题意可得三角函数的定义可知:,则:本题选择A选项.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根14、【答案解析】计算得到|,|cos1,解得cos,根据三角函数的有界性计算范围得到答案.【题目详解】由()()0 可得 ()|cos12cos|cos1,为

12、与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为【答案点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.15、1【答案解析】根据均值的定义计算【题目详解】由题意,故答案为:1【答案点睛】本题考查均值的概念,属于基础题16、【答案解析】先还原几何体,再根据柱体体积公式求解【题目详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【答案点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【答案解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【题目详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【答案点睛】本题考查了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.18、(1)60;25(2)见解析,2.1(

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2