收藏 分享(赏)

2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc

上传人:la****1 文档编号:22978 上传时间:2023-01-06 格式:DOC 页数:17 大小:1.67MB
下载 相关 举报
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第1页
第1页 / 共17页
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第2页
第2页 / 共17页
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第3页
第3页 / 共17页
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第4页
第4页 / 共17页
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第5页
第5页 / 共17页
2023学年湖南省湖南师范大学附属中学高三最后一模数学试题(含解析).doc_第6页
第6页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设复数满足,则( )ABCD2已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是( )A,B,C,D,3函数在上的图象大致为( )ABCD4若复数是纯虚数,则( )A

2、3B5CD5已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD6某几何体的三视图如右图所示,则该几何体的外接球表面积为( )ABCD7已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )A第一象限B第二象限C第三象限D第四象限8若函数的定义域为Mx|2x2,值域为Ny|0y2,则函数的图像可能是( )ABCD9设Py |yx21,xR,Qy |y2x,xR,则AP QBQ PCQDQ 10设复数满足,在复平面内对应的点为,则( )ABCD11设点是椭圆上的一点,是椭圆的两个焦点,若,则( )ABCD12已知,则

3、()ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为_14某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有_种15已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为_16若变量,满足约束条件则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.18(12分)在平面直角坐标系中,直线的

4、参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.19(12分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.20(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无

5、盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.21(12分)ABC的内角的对边分别为,已知ABC的面积为(1)求;(2)若求ABC的周长.22(10分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小

6、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.2、D【答案解析】根据指数函数的图象和特征以及图象的平移可得正确的选项.【题目详解】从题设中提供的图像可以看出,故得,故选:D【答案点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.3、A【答案解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【题目详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【答案点睛】本题考查函数图象的识别,函

7、数的奇偶性的应用,属于基础题.4、C【答案解析】先由已知,求出,进一步可得,再利用复数模的运算即可【题目详解】由z是纯虚数,得且,所以,.因此,.故选:C.【答案点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.5、C【答案解析】根据题目中的基底定义求解.【题目详解】因为,所以能作为集合的基底,故选:C【答案点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.6、A【答案解析】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算【题目详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱

8、垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,且平面,的中点为外接球的球心,半径,外接球表面积故选:A【答案点睛】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键7、B【答案解析】分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,所以复数在复平面内对应的点位于第二象限.故选:B.【答案点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.8、B【答案解析】因为对A不符合定义域当中的每一个元素都有象,即可排

9、除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定故选B9、C【答案解析】解:因为P =y|y=-x2+1,xR=y|y1,Q =y| y=2x,xR =y|y0,因此选C10、B【答案解析】设,根据复数的几何意义得到、的关系式,即可得解;【题目详解】解:设,解得.故选:B【答案点睛】本题考查复数的几何意义的应用,属于基础题.11、B【答案解析】,故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到

10、图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 12、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】,本题正确选项:【答案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为 2R,则AB弦的长度大于等于半径长度的概率P=;故答案为:14、60【答案解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.15、

11、【答案解析】设,由可得,整理得,即点在以为圆心,为半径的圆上又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得16、7【答案解析】画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【题目详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【答案点睛】本题考查二次不等式组与平面区域、线性规划,主要考查推理论证能力以及数形结合思想,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【答案解析】(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用

12、单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【题目详解】(1)设,所以函数在上单调递增,又因为和,则,所以得解得,即, 故的取值范围为;(2) 由于恒成立,恒成立,设, 则, 令, 则,所以在区间上单调递增, 所以,根据条件,只要 ,所以.【答案点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.18、(1),;(2).【答案解析】(1)在直线的参数方程中消去参

13、数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.【题目详解】(1)由得,故直线的普通方程是.由,得,代入公式得,得,故曲线的直角坐标方程是;(2)因为曲线的圆心为,半径为,圆心到直线的距离为,则弦长.又到直线的距离为,所以.【答案点睛】本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.19、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【答案解析】(1)由已知求得,求得三角形的面积,再

14、由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【题目详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【答案点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题20、(1)(2)当时,米时,发酵馆的占地面积最小;当时,时,发酵馆的占地面积最

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2