1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前n项和为,则A3B4C5D62如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D983已知满足,则( )ABCD4过双曲线的右焦点F作双曲线C的一条弦AB,
2、且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D5下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )A深圳的变化幅度最小,北京的平均价格最高B天津的往返机票平均价格变化最大C上海和广州的往返机票平均价格基本相当D相比于上一年同期,其中四个城市的往返机票平均价格在增加6若圆锥轴截面面积为,母线与底面所成角为60,则体积为( )ABCD7双曲线y2=1的渐近线方程是( )Ax2y=0B2xy=0C4xy=0Dx4y=08中,点在边上,平分,若,则( )ABCD9复数(
3、)ABCD10若复数()在复平面内的对应点在直线上,则等于( )ABCD11已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为( )ABCD12复数(为虚数单位),则等于( )A3BC2D二、填空题:本题共4小题,每小题5分,共20分。13将函数的图象向左平移个单位长度,得到一个偶函数图象,则_14的展开式中常数项是_.15平面向量与的夹角为,则_16已知,其中,为正的常数,且,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺
4、的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.18(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案:将每个人的血分别化验,这时需要验1000次.方案:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人
5、的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.(1)设方案中,某组个人的每个人的血化验次数为,求的分布列;(2)设,试比较方案中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)19(12分)已知椭圆()经过点,离心率为,、为椭圆上不同的三点,且满足,为坐标原点(1)若直线、的斜率都存在,求证:为定值;(2)求的取值范围20(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值21(
6、12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.22(10分)已知函数,()若,求的取值范围;()若,对,都有不等式恒成立,求的取值范围2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C2、C【答案解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【题目详解】由题意运行程序可得:,;,;,;不成立,此时输
7、出.故选:C.【答案点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.3、A【答案解析】利用两角和与差的余弦公式展开计算可得结果.【题目详解】,.故选:A.【答案点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.4、C【答案解析】由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题5、D【答案解析】根据条形图可折线图
8、所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【题目详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【答案点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.6、D【答案解析】设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式
9、计算即可.【题目详解】设圆锥底面圆的半径为,由已知,解得,所以圆锥的体积.故选:D【答案点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.7、A【答案解析】试题分析:渐近线方程是y2=1,整理后就得到双曲线的渐近线解:双曲线其渐近线方程是y2=1整理得x2y=1故选A点评:本题考查了双曲线的渐进方程,把双曲线的标准方程中的“1”转化成“1”即可求出渐进方程属于基础题8、B【答案解析】由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【题目详解】平分,根据三角形内角平分线定理可得,又,.故选:.【答案点睛】本题主要考查平面向量的线性运算,属于基础题.9、A【
10、答案解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.10、C【答案解析】由题意得,可求得,再根据共轭复数的定义可得选项.【题目详解】由题意得,解得,所以,所以,故选:C.【答案点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.11、D【答案解析】根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【题目详解】依题意有, , 得,又因为,所以,在上单调递增,所以函数的单调递增区间为
11、.故选:D.【答案点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.12、D【答案解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【题目详解】,所以,故选:D.【答案点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【题目详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【答案点睛】本题考查根据三角函数的对
12、称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.14、-160【答案解析】试题分析:常数项为.考点:二项展开式系数问题.15、【答案解析】由平面向量模的计算公式,直接计算即可.【题目详解】因为平面向量与的夹角为,所以,所以;故答案为【答案点睛】本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.16、【答案解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【题目详解】解:由,得,即,又,解得:为正的常数,故答案为:【答案点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题三、解答
13、题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析,【答案解析】(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【题目详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,.所以X的分布表为:X012P所以.【答案点睛】本题是一道考查概率和期望的常考题型.18、(1)分布列见解析;(2)406.【答案
14、解析】(1)计算个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为,得到分布列.(2)计算,代入数据计算比较大小得到答案.【题目详解】(1)设每个人的血呈阴性反应的概率为,则.所以个人的血混合后呈阴性反应的概率为,呈阳性反应的概率为.依题意可知,所以的分布列为:(2)方案中.结合(1)知每个人的平均化验次数为:时,此时1000人需要化验的总次数为690次,时,此时1000人需要化验的总次数为604次,时,此时1000人需要化验的次数总为594次,即时化验次数最多,时次数居中,时化验次数最少,而采用方案则需化验1000次,故在这三种分组情况下,相比方案,当时化验次数最多可以平均减少次.【答案点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力.19、(1)证明见解