1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ).ABCD2集合的子集的个数是( )A2B3C4D83已知函数(其中
2、为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD4已知f(x)=ax2+bx是定义在a1,2a上的偶函数,那么a+b的值是ABCD5已知三棱锥PABC的顶点都在球O的球面上,PA,PB,AB4,CACB,面PAB面ABC,则球O的表面积为( )ABCD6已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D117若变量,满足,则的最大值为( )A3B2CD108为得到函数的图像,只需将函数的图像( )A向右平移个长度单位B向右平移个长度单位C向左平移个长度单位D向左平移个长度单位9集合的真子集的个数为( )A7B8
3、C31D3210某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD11已知集合,定义集合,则等于( )ABCD12定义在上函数满足,且对任意的不相等的实数有成立,若关于x的不等式在上恒成立,则实数m的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.14实数,满足,如果目标函数的最小值为,则的最小值为_15若实数满足不等式组,则的最小值是_16已知是夹角为的两个单位向量,
4、若,则与的夹角为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四边形中,.(1)求的长;(2)若的面积为6,求的值.18(12分)在三角形中,角,的对边分别为,若.()求角;()若,求.19(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值与最小值.20(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.(
5、)写出整数4的所有“正整数分拆”;()对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;()对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)21(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名
6、顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.22(10分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】易得,又,平方计算即可得到答案.【题目详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,所以,即,故离心率为.故选:C.【答案点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.2、D【答案解析】先确定集合中元素的个数,再得子集个数【题目详解】由题意,有三个元素
7、,其子集有8个故选:D【答案点睛】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个3、B【答案解析】求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围【题目详解】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【答案点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围4、B【答案解析】依照偶函数的定义,对定义域内的任意实数,f(x)=f(x),且定义域关于原点对称,a1=2a,即可得解.【题目详解】根据偶函数的定义域关于原点对称,且f(x)是定义在a1,2a上
8、的偶函数,得a1=2a,解得a=,又f(x)=f(x),b=0,a+b=故选B【答案点睛】本题考查偶函数的定义,对定义域内的任意实数,f(x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数5、D【答案解析】由题意画出图形,找出PAB外接圆的圆心及三棱锥PBCD的外接球心O,通过求解三角形求出三棱锥PBCD的外接球的半径,则答案可求.【题目详解】如图;设AB的中点为D;PA,PB,AB4,PAB为直角三角形,且斜边为AB,故其外接圆半径为:rABAD2;设外接球球心为O;CACB,面PAB面ABC,CDAB可得CD面PAB;且DC.O在CD上;故有:AO2OD2
9、+AD2R2(R)2+r2R;球O的表面积为:4R24.故选:D.【答案点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.6、B【答案解析】根据题意计算,解不等式得到答案.【题目详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【答案点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.7、D【答案解析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可【题目详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意
10、义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题8、D【答案解析】,所以要的函数的图象,只需将函数的图象向左平移个长度单位得到,故选D9、A【答案解析】计算,再计算真子集个数得到答案.【题目详解】,故真子集个数为:.故选:.【答案点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.10、C【答案解析】在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【题目详解】两组至少都是人,则分组中两组的人数分别为、或、,又因为名女干部不能单独成一
11、组,则不同的派遣方案种数为.故选:C.【答案点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.11、C【答案解析】根据定义,求出,即可求出结论.【题目详解】因为集合,所以,则,所以.故选:C.【答案点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.12、B【答案解析】结合题意可知是偶函数,且在单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数,计算最值,即可.【题目详解】结合题意可知为偶函数,且在单调递减,故可以转换为对应于恒成立,即即对恒成立即对恒成立令,则上递增,在上递减,所以令,在上递减所以.故,故选B.【答案
12、点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【题目详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此
13、种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【答案点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题14、【答案解析】作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【题目详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,
14、得,所以点C的坐标为等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【答案点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.15、-1【答案解析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-116、【答案解析】依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【题目详解】解:因为是夹角为的两个单位向量所以,又,所以,所以,因为所以;故答案为:【答案点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2)