收藏 分享(赏)

2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc

上传人:la****1 文档编号:28087 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.37MB
下载 相关 举报
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共22页
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共22页
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共22页
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共22页
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共22页
2023届山西省太原师范学院附属中学高三第一次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知正项等比数列中,存在两项,使得,则的最小值是( )ABCD2已知圆:,圆:,点、分别是圆、圆上

2、的动点,为轴上的动点,则的最大值是( )AB9C7D3定义在R上的函数,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )ABCD4设函数,则,的大致图象大致是的( )ABCD5过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD6函数的图象大致为( )ABCD7函数的图像大致为( ).ABCD 8在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )ABCD9在中,为边上的中点,且,则( )ABCD10已知,则下列说法中正确的是( )A是假命题B是真命题C是真命题D是假命题11陀螺是中国民间最早的娱乐工具,也称

3、陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )ABCD12 “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知(且)有最小值,且最小值不小于1,则的取值范围为_.14设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为_15已知函数,若函数有个不同的

4、零点,则的取值范围是_16设变量,满足约束条件,则目标函数的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,点为射线与曲线的交点,求点的极径.18(12分)设,其中(1)当时,求的值;(2)对,证明:恒为定值19(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(

5、不与重合)求二面角的正切值的最小值20(12分)已知函数.(1)若,求函数的单调区间;(2)时,若对一切恒成立,求a的取值范围.21(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家

6、之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.22(10分)2019年是五四运动100周年.五四运动以来的100年,是中国青年一代又一代接续奋斗、凯歌前行的100年,是中口青年用青春之我创造青春之中国、青春之民族的100年.为继承和发扬五四精神在青年节到来之际,学校组织“五四运动100周年”知识竞赛,竞赛的一

7、个环节由10道题目组成,其中6道A类题、4道B类题,参赛者需从10道题目中随机抽取3道作答,现有甲同学参加该环节的比赛.(1)求甲同学至少抽到2道B类题的概率;(2)若甲同学答对每道A类题的概率都是,答对每道B类题的概率都是,且各题答对与否相互独立.现已知甲同学恰好抽中2道A类题和1道B类题,用X表示甲同学答对题目的个数,求随机变量X的分布列和数学期望.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接

8、取的值代入比较即可.【题目详解】,或(舍).,.当,时;当,时;当,时,所以最小值为.故选:C.【答案点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.2、B【答案解析】试题分析:圆的圆心,半径为,圆的圆心,半径是要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,故的最大值为,故选B考点:圆与圆的位置关系及其判定【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值3、D【答案解析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可【题目详解】由条件可得函数关于直线

9、对称;在,上单调递增,且在时使得;又,所以选项成立;,比离对称轴远,可得,选项成立;,可知比离对称轴远,选项成立;,符号不定,无法比较大小,不一定成立故选:【答案点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.4、B【答案解析】采用排除法:通过判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【答案点睛】本题考查利用函数的奇偶性

10、和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.5、B【答案解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【题目详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【答案点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.6、A【答案解析】用偶函数的图象关于轴对称排除,用排除,用排除.故

11、只能选.【题目详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【答案点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.7、A【答案解析】本题采用排除法: 由排除选项D;根据特殊值排除选项C;由,且无限接近于0时, 排除选项B;【题目详解】对于选项D:由题意可得, 令函数 ,则,;即.故选项D排除;对于选项C:因为,故选项C排除;对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除;故选项:A【答案点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中

12、档题.8、B【答案解析】作出图形,设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【题目详解】如下图所示:设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,平面,平面,平面平面,所以,四边形为平行四边形,可得,为的中点,同理可证为的中点,因此,.故选:B.【答案点睛】

13、本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.9、A【答案解析】由为边上的中点,表示出,然后用向量模的计算公式求模.【题目详解】解:为边上的中点,故选:A【答案点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.10、D【答案解析】举例判断命题p与q的真假,再由复合命题的真假判断得答案【题目详解】当时,故命题为假命题;记f(x)exx的导数为f(x)ex,易知f(x)exx(,0)上递减,在(0,)上递增,f(x)f(0)0,即,故命题为真命题;是假命题故选D【答案点睛】本题考查复合命题的真假判断,

14、考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题11、C【答案解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【题目详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【答案点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12、D【答案解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2