收藏 分享(赏)

2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc

上传人:sc****y 文档编号:28107 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.77MB
下载 相关 举报
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第1页
第1页 / 共18页
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第2页
第2页 / 共18页
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第3页
第3页 / 共18页
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第4页
第4页 / 共18页
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第5页
第5页 / 共18页
2023届湖南省张家界市民族中学高三第二次诊断性检测数学试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )ABCD2设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD3已知命题,;命题若,则,下列命

2、题为真命题的是()ABCD4已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D20175一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )ABCD6复数的共轭复数在复平面内所对应的点位于( )A第一象限B第二象限C第三象限D第四象限7用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为( )ABCD8已知等差数列的前n项和为,且,若(,且),则i的取值集合

3、是( )ABCD9已知双曲线:的左、右两个焦点分别为,若存在点满足,则该双曲线的离心率为( )A2BCD510已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD211设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是( )A且B且C且D且12设是虚数单位,则( )ABC1D2二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为_.14已知随机变量服从正态分布,则_15在ABC中,()(1),若角A的最大值为,则实数的值是_16函数与的图象上存在关于轴的对称点,则实数的取值

4、范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)传染病的流行必须具备的三个基本环节是:传染源、传播途径和人群易感性.三个环节必须同时存在,方能构成传染病流行.呼吸道飞沫和密切接触传播是新冠状病毒的主要传播途径,为了有效防控新冠状病毒的流行,人们出行都应该佩戴口罩.某地区已经出现了新冠状病毒的感染病人,为了掌握该地区居民的防控意识和防控情况,用分层抽样的方法从全体居民中抽出一个容量为100的样本,统计样本中每个人出行是否会佩戴口罩的情况,得到下面列联表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握认为是否会佩戴口罩出行的行为与年龄有关?(2

5、)用样本估计总体,若从该地区出行不戴口罩的居民中随机抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82818(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.19(12分)在数列和等比数列中,.(1)求数列及的通项公式;(2)若,求数列的前n项和.20(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成

6、的锐二面角的余弦值.21(12分)在平面四边形(图)中,与均为直角三角形且有公共斜边,设,将沿折起,构成如图所示的三棱锥,且使=. (1)求证:平面平面;(2)求二面角的余弦值.22(10分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】设,根据向量线性运算法则可表示出和;分别求解出和,根据向量夹角的求解方法求得,即可得所求角

7、的余弦值.【题目详解】设棱长为1,由题意得:,又即异面直线与所成角的余弦值为:本题正确选项:【答案点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.2、A【答案解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【题目详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【答案点睛】本题考查双曲线的简单几何性质,属于中档题.3、B【答案解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取a=1,b=2,ab,但a2b2,则命题q是假命题,则q是真命题pq是假命题,pq是真命题,pq是假命题,pq是假

8、命题故选B4、B【答案解析】根据题意计算,计算,得到答案.【题目详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【答案点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.5、B【答案解析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论【题目详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【答案点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题6、D【答案解析】由复数除法运算求出,再写出

9、其共轭复数,得共轭复数对应点的坐标得结论【题目详解】,对应点为,在第四象限故选:D.【答案点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义掌握复数的运算法则是解题关键7、C【答案解析】由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【题目详解】每次生成一个实数小于1的概率为.这3个实数都小于1的概率为.故选:C.【答案点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.8、C【答案解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【题目详解】设公差为d,由题知,解得,所以数列为,故.

10、故选:C.【答案点睛】本题主要考查了等差数列的基本量的求解,属于基础题.9、B【答案解析】利用双曲线的定义和条件中的比例关系可求.【题目详解】.选B.【答案点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.10、A【答案解析】设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【题目详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【答案点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题

11、的关键,属于中档题.11、B【答案解析】由且可得,故选B.12、C【答案解析】由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:, ,解得:.故选:C.【答案点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把 当成进行运算.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【题目详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【答案点睛】本题考查利用抛物线上的点求

12、参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.14、0.22.【答案解析】正态曲线关于x对称,根据对称性以及概率和为1求解即可。【题目详解】【答案点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题15、1【答案解析】把向量进行转化,用表示,利用基本不等式可求实数的值.【题目详解】,解得1故答案为:1.【答案点睛】本题主要考查平面向量的数量积应用,综合了基本不等式,侧重考查数学运算的核心素养.16、【答案解析】先求得与关于轴对称的函数,将问题转化为与的图象有交点,即方程有解.对分成三种情况进行分类讨论,由此求得实数的取值范围.【题目详解】因为关于轴对称的函数

13、为,因为函数与的图象上存在关于轴的对称点,所以与的图象有交点,方程有解.时符合题意.时转化为有解,即,的图象有交点,是过定点的直线,其斜率为,若,则函数与的图象必有交点,满足题意;若,设,相切时,切点的坐标为,则,解得,切线斜率为,由图可知,当,即时,的图象有交点,此时,与的图象有交点,函数与的图象上存在关于轴的对称点,综上可得,实数的取值范围为.故答案为:【答案点睛】本小题主要考查利用导数求解函数的零点以及对称性,函数与方程等基础知识,考查学生分析问题,解决问题的能力,推理与运算求解能力,转化与化归思想和应用意识.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的

14、把握认为是否戴口罩出行的行为与年龄有关.(2)【答案解析】(1) 根据列联表和独立性检验的公式计算出观测值,从而由参考数据作出判断.(2) 因为样本中出行不戴口罩的居民有30人,其中年轻人有10人,用样本估计总体,则出行不戴口罩的年轻人的概率为,是老年人的概率为.根据独立重复事件的概率公式即可求得结果.【题目详解】(1)由题意可知,有的把握认为是否戴口罩出行的行为与年龄有关.(2)由样本估计总体,出行不戴口罩的年轻人的概率为,是老年人的概率为.人未戴口罩,恰有2人是青年人的概率.【答案点睛】本题主要考查独立性检验及独立重复事件的概率求法,难度一般.18、(1)证明见详解;(2)证明见详解【答案解析】(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,则

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2