1、物理选 择 性 必 修第三册普通高中教科书上海科学技术出版社WULI第三册上海科学技术出版社普通高中教科书物理第三册选 择 性 必 修物理选择性必修定价:10.10 元1 物理普通高中教科书必性择选修第三册上海科学技术出版社2主 编:蒋最敏 高 景本册主编:朱 臻编写人员:(以姓氏笔画为序)朱 臻 李希凡 杨鸣华 杨 炯 徐建军 廖 灿 谭一宁责任编辑:武执政 金波艳 李林高美术设计:房惠平出 版上海世纪出版(集团)有限公司上海科学技术出版社(上海市钦州南路71号邮政编码200235)发 行上海新华书店印 刷当纳利(上海)信息技术有限公司版 次2021 年 3 月第 1 版印 次2021 年
2、3 月第 1 次开 本890 毫米 1240 毫米1/16印 张8字 数175 千字书 号ISBN 978-7-5478-5296-5/G1034定 价10.10 元版权所有未经许可不得采用任何方式擅自复制或使用本产品任何部分违者必究如发现印装质量问题或对内容有意见建议,请与本社联系。电话:021-64848025,邮箱:全国物价举报电话:12315声明按照中华人民共和国著作权法第二十三条有关规定,我们已尽量寻找原作者支付报酬。原作者如有关于支付报酬事宜可及时与出版社联系。普通高中教科书 物理 选择性必修 第三册上海市中小学(幼儿园)课程改革委员会组织编写1 目录第十章分子动理论 1第一节 分
3、子的大小 2第二节 分子的运动 分子间的相互作用 6第三节 分子运动速率分布的统计规律 10第十一章气体、液体和固体 15第一节 气体的状态 16第二节 气体的等温变化 19第三节 气体的等容变化和等压变化 24第四节 液体的基本性质 29第五节 固体的基本性质 34第六节 材料及其应用简介 391 1目录第十二章热力学定律 46第一节 物体的内能 47第二节 能量的转化与守恒 51第三节 能量转化的方向性 552第十三章原子结构 62第一节 电子的发现 63第二节 原子的核式结构模型 66第三节 玻尔的原子模型 70第十四章微观粒子的波粒二象性 79第一节 光电效应 光子说 80第二节 波粒
4、二象性 86第三节 原子结构的量子力学模型 90第十五章原子核 95第一节 天然放射现象 原子核的衰变 96第二节 原子核的组成 99第三节 核能及其应用 104第四节 粒子物理简介 1112 2目录1 第十章分子动理论物质是由分子组成的,但分子太小,人类无法直接观察分子及其运动。同时,由于组成物质的分子难以计数,分子的运动又是杂乱的、随机的,用经典力学手段研究每个分子的运动实际上是不可能的。物理学家将力学方法和统计方法相结合,分析宏观可测的热现象,获得了分子无规则运动和分子间相互作用的重要信息,建立了分子动理论。在初中阶段我们已经学习了分子动理论的基本观点。在本章中将估测油酸分子直径;了解扩
5、散现象,观察布朗运动,了解分子动理论基本观点和相关的实验证据;了解分子运动速率分布的统计规律;知道分子运动速率分布的物理意义。在解释布朗运动的过程中,增强证据意识,提升科学论证能力;通过学习分子运动速率分布的统计规律,体会统计方法对于复杂系统研究的重要意义,提升运动的观念;通过实验认识用积累法测量微小量和用宏观量间接测量微观量的方法,发展科学探究能力。本章也是学习气体、液体和固体的性质以及热力学定律的基础。2第十章 分子动理论 分子大小的测量多年以来,科学家一直希望能看到分子和原子的样子,但由于这类微粒实在太小,受传统显微镜原理上的限制一直未能如愿。直到 20 世纪 80 年代初,根据量子力学
6、原理研制的扫描隧道显微镜(Scanning Tunneling Microscope,STM)问世,才圆了科学家长期的梦想。图10-2 所示是一张在扫描隧道显微镜下看到的被放大近千万倍的硅片表面原子排列的图像,可以看到原子线度的数量级约为 0.1 nm。用扫描隧道显微镜不仅能“看到”单个原子,还能随心所欲地操控单个原子,这是显微技术划时代的进步。图10-3 所示是我国科学家通过移动硅表面原子“写”成的中文汉字。我们肉眼虽然看不见分子,但能通过实验估测分子的大小。第一节分子的大小如图 10-1 所示,一片叶子在显微镜下放大 6 倍,可以看到清晰的叶脉;再放大 100倍,可以看到叶面的表皮细胞和气
7、孔;再不断放大,可以看到叶绿体。物体都是由分子、原子构成的,要放大到什么程度我们才能看到组成叶片的分子?分子究竟有多小?图 10-3 我国科学家移动硅原子“写”成的汉字图 10-2 硅片表面原子排列图像图 10-1 显微镜下不断被放大的叶子放大 6 倍再放大 100 倍再放大 5 倍再放大 6 倍叶脉气孔叶绿体3第一节 分子的大小用油膜法估测油酸分子的大小提出问题如何估测出分子的大小?实验原理与方案为了研究分子的大小,我们将组成物质的分子视作球形。如果能把一定量的某种物质的分子一个紧挨一个地平铺开来,形成一层单分子膜,那么只要知道这部分物质的体积 V 和这层膜的面积 S,根据体积公式 V=Sd
8、,就可以估算出膜的厚度d,即分子的直径。将油酸酒精溶液滴在水面上时,溶液会在水面上很快散开,其中酒精溶于水,最后在水面上形成一层纯油酸组成的单分子薄膜,如图 10-4 所示。1.估测是一种常用的科学研究方法。通过建立模型将问题合理简化,获得对复杂问题的粗略估计。实际分子有复杂的结构,将其视为球形正是建立模型进行估测的方法。2.积累法是测量微小量的一种科学方法,又称累计法。它是将微小量积累成一个可测的、较大的量后再取平均值,这一方法可以减小测量误差。例如,测量一枚邮票的质量、细铜丝的直径、单摆的周期等,都可使用这种方法。助 臂助 臂一图 10-4 油酸单分子薄膜图 10-5 实验器材 刻有方格的
9、透明板 浅水盘 量筒 油酸酒精溶液 刻度尺 水彩笔 注射器 痱子粉和筛子实验装置与方法实验中使用的器材包括:油酸酒精溶液、注射器、痱子粉和筛子、量筒、刻度尺、浅水盘、刻有方格的透明板、水彩笔等,如图 10-5 所示。测出一滴溶液中所含油酸的体积 V 及其形成的单分子油膜的面积 S。根据公式算出分子的大小。4第十章 分子动理论 物质的量 阿伏加德罗常数我们在化学课中学过物质的量的概念,它的单位是摩尔(mol),简称摩。1 mol 物质所含的粒子数是恒定的,即 6.021023个,这个数叫做阿伏加德罗常数(Avogadro constant),通常用符号 NA表示。物质的量是国际单位制中七个基本量
10、之一。实验操作与数据收集把已知浓度的油酸酒精溶液滴入量筒,记下滴数,测量溶液体积并计算出每滴溶液中油酸的体积;将痱子粉均匀地撒在水面上,滴入一滴油酸酒精溶液,待油膜的形状稳定后,将油膜的轮廓描绘在刻有方格的透明板上,如图 10-6 所示。数出油膜覆盖的格子数,算出油膜的面积。数据分析一滴油酸酒精溶液中含有油酸的体积:V=_ 单分子油膜的面积:S=_实验结论油酸分子的直径 d=SV_交流与讨论(1)各组测得的分子大小一样吗?(2)如何提高测量结果的精确程度?油酸不溶于水,但溶于酒精、乙醚等有机溶剂。油酸分子式是 C18H34O2,其中羧基-COOH是亲水基,另一基团 C17H33-则不亲水。将一
11、滴油酸酒精溶液滴在水面上,酒精溶于水,油酸就在水面散开。油酸分子的羧基-COOH 在水面下,基团 C17H33-在水面上,整个油酸分子便“站立”在水面上,形成一层薄薄的单分子油膜。图 10-6 水面上形成的油膜物理学中有多种测定分子大小的方法,用不同方法测出的分子直径的数量级是相同的。随着技术的进步,分子大小的测量越来越精确。现代测量结果表明,除了一些大分子,例如某些有机物质的分子外,多数分子直径的数量级为 0.1 nm。5第一节 分子的大小知道了分子的大小,可以粗略地算出阿伏加德罗常数。反之,知道了阿伏加德罗常数,也可以估算出液体和固体分子的大小,还可以算出分子的质量。1811 年,意大利化
12、学家阿伏加德罗率先提出:在等温等压的条件下,相同体积的任何气体都含有相同的分子数。后来人们就把标准状态(0,1 个标准大气压*)下体积为2.2410-2 m3的气体所含的分子数称为“阿伏加德罗常数”。2018 年国际计量大会第 26 次会议将摩尔的定义修改为:“1 mol 包含 6.022 140 761023个基本单元,这一常数被称为阿伏加德罗常数,单位为 mol-1”。阿伏加德罗常数是一个基本常量,它将宏观意义下物质的量与微观意义下的粒子数联系起来,成为宏观世界与微观世界之间的重要桥梁。物理学家们提出各种方法来测定阿伏加德罗常数,一百多年以来,测量的精度不断提高,目前通常取 NA=6.02
13、1023 mol-1。如果水分子的直径是 4.010-10 m,并且知道 1 mol 水的体积是 1.810-5 m3,请估算阿伏加德罗常数。自 主 活 动问题 思考与1.在“用油膜法估测油酸分子的大小”实验中,用注射器在水面上滴一滴酒精油酸溶液形成单分子油酸层。如果用纯油酸来做实验,估测要形成一层单分子油膜,油膜的面积会有多大?(已知注射器滴满 1 mL 溶液的滴数为 200,油酸分子的直径约为 1 nm)2.设某金属的密度为、摩尔质量为 M、阿伏加德罗常数为M、阿伏加德罗常数为MNANAN。试问 1 个该金属原子的质量及其平均占有的体积分别是多少?3.试估算在常温常压下一杯体积为 6.01
14、0-4 m3的水中约有多少个水分子。4.已知空气的平均摩尔质量 M=2.910M=2.910M-2 kg/mol。某同学做一次深呼吸大约吸入 4102 cm3的空气。那么一次深呼吸吸入空气的质量约为多少千克?大约吸入多少个空气分子?*1 个标准大气压约等于 1.013105 Pa。6第十章 分子动理论第二节分子的运动 分子间的相互作用当我们路过面包店时,为什么能闻到诱人的香味?图10-7 中两个相互压紧的铅块,为什么能够“粘”在一起?要解释这些现象,我们需要了解分子的运动以及分子间的相互作用规律。分子的运动组成物质的分子在做永不停息的无规则运动,虽然用肉眼看不到分子,但我们可以通过一些宏观现象
15、为这个结论提供证据。扩散现象如图 10-8 所示,取两杯温度不同、体积相同的清水,分别向其中滴入一滴红墨水,红墨水在两杯水中散开,这种现象称为扩散(diffusion)。可以观察到温度高的水中的红墨水扩散得更快,这说明温度越高,扩散越快。扩散现象并不是重力或对流等原因造成的,而是由于分子的无规则运动产生的。从微观角度看,墨水的扩散实际上是墨水颗粒在水中被水分子撞击而不断移动的过程。温度越高扩散越快,说明温度越高,水分子运动越剧烈。气体中也存在扩散现象,能闻到面包的香味就是面包的芳香分子扩散产生的结果。扩散现象还能在固体中发生,并且有重要的应用,例如利用扩散现象将碳原子掺入钢件的表面可以提高钢件
16、的硬度,在半导体材料中掺入微量的杂质可以达到控制半导体性能的目的。布朗运动 1827 年,英国植物学家布朗(R.Brown,17731858)用显微镜观察悬浮在水中的花粉,发现花粉颗粒不停地做无规则的运动。他经过不断尝试发现,除了花粉外,对于液体中类似大小的其他悬浮颗粒,都可以观察到这种运动。后人把悬浮颗粒的这种无规则运动叫做布朗运动(Brownian motion)。将一滴用水稀释过的墨汁滴在载玻片上,覆上盖玻片,放在高倍显微镜下观察,可以看到如图 10-9 所示的悬浮颗粒在液体中不停地做无规则运动,这就是布朗运动。图 10-8 扩散现象图 10-7“粘”在一起的铅块7第二节 分子的运动 分子间的相互作用布朗运动是怎样产生的呢?起初,人们认为是由外界影响如振动、液体的对流等引起的。但实验表明:在尽量排除外界影响的情况下布朗运动仍然存在;只要颗粒足够小,在任何液体中都可以观察到布朗运动;布朗运动不会停止,连续观察许多天,甚至几个月,也不会看到这种运动停下来。可见布朗运动的成因不在外界,而在液体内部。悬浮在液体中的颗粒周围布满了大量的液体分子,颗粒的布朗运动应该是由液体分子的撞击造成的。