1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为ABCD2如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互
2、相垂直的有( )A2对B3对C4对D5对3某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有( )种ABCD4我国古代有着辉煌的数学研究成果,其中的周髀算经、九章算术、海岛算经、孙子算经、缉古算经,有丰富多彩的内容,是了解我国古代数学的重要文献这5部专著中有3部产生于汉、魏、晋、南北朝时期某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )ABCD5已知满足,则的取值范围为( )ABCD6函数与的图象上存在关于直线对称的点,则的
3、取值范围是( )ABCD7公比为2的等比数列中存在两项,满足,则的最小值为( )ABCD8已知实数满足约束条件,则的最小值是ABC1D49空气质量指数是反映空气状况的指数,指数值趋小,表明空气质量越好,下图是某市10月1日-20日指数变化趋势,下列叙述错误的是( )A这20天中指数值的中位数略高于100B这20天中的中度污染及以上(指数)的天数占C该市10月的前半个月的空气质量越来越好D总体来说,该市10月上旬的空气质量比中旬的空气质量好10已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限11已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD
4、12阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,角所对的边分别为,为的面积,若,则的形状为_,的大小为_14如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_,点到直线的距离的最大值为_.15如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面积为
5、.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?16如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.18(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查调查后,就顾客“购物体验”的满意度统计如下:满意不满意男4040女8040(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?(2)为答谢顾客,该商场对某款价格为
6、100元/件的商品开展促销活动据统计,在此期间顾客购买该商品的支付情况如下:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)如图,在三棱柱中,已知四边形为矩形,的角平分线交于.(1)求证:平面平面;(2)求二面角的余弦值.20(
7、12分)如图,在斜三棱柱中,平面平面,均为正三角形,E为AB的中点()证明:平面;()求斜三棱柱截去三棱锥后剩余部分的体积21(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.22(10分)已知,求证:(1);(2).2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值【题目详解】设,联立,得则,则由,得 设,则 ,则点到直线的距离从而令 当
8、时,;当时,故,即的最小值为本题正确选项:【答案点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.2、C【答案解析】画出该几何体的直观图,易证平面平面,平面平面,平面平面,平面平面,从而可选出答案【题目详解】该几何体是一个四棱锥,直观图如下图所示,易知平面平面,作POAD于O,则有PO平面ABCD,POCD,又ADCD,所以,CD平面PAD,所以平面平面,同理可证:平面平面,由三视图可知:POAOOD,所以,APPD,又APCD,所以,AP平面PCD,所以,平面平面,所以该
9、多面体各表面所在平面互相垂直的有4对【答案点睛】本题考查了空间几何体的三视图,考查了四棱锥的结构特征,考查了面面垂直的证明,属于中档题3、C【答案解析】在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【题目详解】两组至少都是人,则分组中两组的人数分别为、或、,又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【答案点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.4、D【答案解析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是
10、汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【题目详解】周髀算经、九章算术、海岛算经、孙子算经、缉古算经,这5部专著中有3部产生于汉、魏、晋、南北朝时期记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为故选D【答案点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方
11、法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.5、C【答案解析】设,则的几何意义为点到点的斜率,利用数形结合即可得到结论.【题目详解】解:设,则的几何意义为点到点的斜率,作出不等式组对应的平面区域如图:由图可知当过点的直线平行于轴时,此时成立;取所有负值都成立;当过点时,取正值中的最小值,此时;故的取值范围为;故选:C.【答案点睛】本题考查简单线性规划的非线性目标函数函数问题,解题时作出可行域,利用目标函数的几何意义求解是
12、解题关键对于直线斜率要注意斜率不存在的直线是否存在6、C【答案解析】由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【题目详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件故选:C.【答案点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题7、D【答案解析】根据已知条件和等比数列的通项公式,求出关系,即可求解.【题目详解】,当时,当时,当时,当时,当时,当时,最小值为.
13、故选:D.【答案点睛】本题考查等比数列通项公式,注意为正整数,如用基本不等式要注意能否取到等号,属于基础题.8、B【答案解析】作出该不等式组表示的平面区域,如下图中阴影部分所示,设,则,易知当直线经过点时,z取得最小值,由,解得,所以,所以,故选B9、C【答案解析】结合题意,根据题目中的天的指数值,判断选项中的命题是否正确.【题目详解】对于,由图可知天的指数值中有个低于,个高于,其中第个接近,第个高于,所以中位数略高于,故正确.对于,由图可知天的指数值中高于的天数为,即占总天数的,故正确.对于,由图可知该市月的前天的空气质量越来越好,从第天到第天空气质量越来越差,故错误.对于,由图可知该市月上
14、旬大部分指数在以下,中旬大部分指数在以上,所以该市月上旬的空气质量比中旬的空气质量好,故正确.故选:【答案点睛】本题考查了对折线图数据的分析,读懂题意是解题关键,并能运用所学知识对命题进行判断,本题较为基础.10、A【答案解析】利用复数除法运算化简,由此求得对应点所在象限.【题目详解】依题意,对应点为,在第一象限.故选A.【答案点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.11、C【答案解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【题目详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【答案点睛】本题考查了导数在判断函数单调性中的应用,恒成