收藏 分享(赏)

2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc

上传人:sc****y 文档编号:14387 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.38MB
下载 相关 举报
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第1页
第1页 / 共22页
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第2页
第2页 / 共22页
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第3页
第3页 / 共22页
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第4页
第4页 / 共22页
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第5页
第5页 / 共22页
2023学年浙江宁波市北仑区高考全国统考预测密卷数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD2已知锐角满足则( )ABCD3在等腰直角三角形中,为的中点,将它沿翻折,使点与点间的距离为,此时四面体的外接球的表面积为( ).ABCD4命题“”的否定为(

2、)ABCD5是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD6数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线恰好是四叶玫瑰线.给出下列结论:曲线C经过5个整点(即横、纵坐标均为整数的点);曲线C上任意一点到坐标原点O的距离都不超过2;曲线C围成区域的面积大于;方程表示的曲线C在第二象限和第四象限其中正确结论的序号是( )ABCD7阿基米德(公元前287年公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体

3、的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )ABCD8已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则( )A3BCD9已知数列满足,(),则数列的通项公式( )ABCD10正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为( )ABCD11已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-212设函数若关于的方程有四个实数解,其中,则的取

4、值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为等比数列,是它的前项和.若,且与的等差中项为,则_.14已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_15若函数,其中且,则_16的展开式中,常数项为_;系数最大的项是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.18(12分)等差数列的公差为2, 分别等于等比数列的第2项,第3项,第4项.(1)求数列和的通项公式;(2)若

5、数列满足,求数列的前2020项的和19(12分)如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.(1)求的值;(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.20(12分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y290相切(1)求圆的方程;(2)设直线axy+50(a0)与圆相交于A,B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(2,4),若存在,求出实数a的值;若不存在,请说明理由21(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围

6、.22(10分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a

7、=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在2、C【答案解析】利用代入计算即可.【题目详解】由已知,因为锐角,所以,即.故选:C.【答案点睛】本题考查二倍角的正弦、余弦公式的应用,考查学生的运算能力,是一道基础题.3、D【答案解析】如图,将四面体放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据

8、几何关系,求外接球的半径.【题目详解】中,易知, 翻折后, ,设外接圆的半径为, , ,如图:易得平面,将四面体放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为, , 四面体的外接球的表面积为.故选:D【答案点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径 容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解.4、C【答案解析】套用命题的否定形式即可.【题目详解】命

9、题“”的否定为“”,所以命题“”的否定为“”.故选:C【答案点睛】本题考查全称命题的否定,属于基础题.5、D【答案解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【题目详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【答案点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.6、B【答案解析】利用基本不等式得,可判断;和联立解得可判断;由图可判断.【题目详解】,解得(当且仅当时取等号),则正确;将和联

10、立,解得,即圆与曲线C相切于点,则和都错误;由,得正确.故选:B.【答案点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.7、C【答案解析】设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【题目详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为 .故选:C【答案点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.8、C【答案解析】根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【题目详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足

11、分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【答案点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.9、A【答案解析】利用数列的递推关系式,通过累加法求解即可【题目详解】数列满足:,可得以上各式相加可得:,故选:【答案点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力10、C【答案解析】分别以直线为轴,直线为

12、轴建立平面直角坐标系,设,根据,可求,而,化简求解.【题目详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,则,由,即,得.所以=,所以当时,的最小值为.故选:C.【答案点睛】本题考查向量的数量积的坐标表示,属于基础题.11、D【答案解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【答案点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.12、B【答案解析】画出函数图像,根据图像知:,计算得到答案.【题目详解】,画出函数图像,如图所示:根据图像

13、知:,故,且.故.故选:.【答案点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【题目详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【答案点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.14、【答案解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根15、【答案解

14、析】先化简函数的解析式,在求出,从而求得的值.【题目详解】由题意,函数可化简为,所以,所以.故答案为:0.【答案点睛】本题主要考查了二项式定理的应用,以及导数的运算和函数值的求解,其中解答中正确化简函数的解析式,准确求解导数是解答的关键,着重考查了推理与运算能力.16、 【答案解析】求出二项展开式的通项,令指数为零,求出参数的值,代入可得出展开式中的常数项;求出项的系数,利用作商法可求出系数最大的项.【题目详解】的展开式的通项为,令,得,所以,展开式中的常数项为;令,令,即,解得,因此,展开式中系数最大的项为.故答案为:;.【答案点睛】本题考查二项展开式中常数项的求解,同时也考查了系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2