1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,点,设对一切都有不等式 成立,则正整数的最小值为( )ABCD2设复数满足,在复平面内对应的点的坐标为则()ABCD3若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是A5,0)B(5,0)C3,0)D(3,0)
2、4已知满足,则( )ABCD5设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限6复数在复平面内对应的点为则( )ABCD7已知函数(),若函数有三个零点,则的取值范围是( )ABCD8我国古代数学家秦九韶在数书九章中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为( )ABCD9已知集合,则( )ABC或D10执行如图所示的程序框图,输出的结果为( )AB4CD11已知、,则下列是等式成立的必要不充分条件的是( )ABCD12已知,都是偶函数,且在上单调递增,设函数,若,则(
3、 )A且B且C且D且二、填空题:本题共4小题,每小题5分,共20分。13正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为_14在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为_.15设是定义在上的函数,且,对任意,若经过点的一次函数与轴的交点为,且互不相等,则称为关于函数的平均数,记为.当_时,为的几何平均数.(只需写出一个符合要求的函数即可)16二项式的展开式的各项系数之和为_,含项的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,与均为等腰直角三角形,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.18(12分)
4、在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值19(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.20(12分)已知抛物线:y22px(p0)的焦点为F,P是抛物线上一点,且在第一象限,满足(2,2)(1)求抛物线的方程;(2)已知经过点A(3,2)的直线交抛物线于M,N两点,经过定点B(3,6)和M的直线与抛物线交于另一点L,问直线NL是否恒过
5、定点,如果过定点,求出该定点,否则说明理由21(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.22(10分)在平面四边形中,已知,.(1)若,求的面积;(2)若求的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先求得,再求得左边的范围,只需,利用单调性解得t的范围.【题目详解】由题意知sin,随n的增大而
6、增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【答案点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.2、B【答案解析】根据共轭复数定义及复数模的求法,代入化简即可求解.【题目详解】在复平面内对应的点的坐标为,则,代入可得,解得.故选:B.【答案点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.3、C【答案解析】求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【题目详解】由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,
7、0)上是减函数,作出其图象如图所示令x3x2,得x0或x3,则结合图象可知,解得a3,0),故选C.【答案点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.4、A【答案解析】利用两角和与差的余弦公式展开计算可得结果.【题目详解】,.故选:A.【答案点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.5、D【答案解析】先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【题目详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【答案点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其
8、几何意义,属于基础题.6、B【答案解析】求得复数,结合复数除法运算,求得的值.【题目详解】易知,则.故选:B【答案点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.7、A【答案解析】分段求解函数零点,数形结合,分类讨论即可求得结果.【题目详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=⻕
9、1;(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【答案点睛】本题考查由函数零点的个数求参数范围,属中档题.8、A【答案解析】根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【答案点睛】本题主要考查正弦定理和余弦定理以及类比推理,
10、还考查了运算求解的能力,属于中档题.9、D【答案解析】首先求出集合,再根据补集的定义计算可得;【题目详解】解:,解得,.故选:D【答案点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.10、A【答案解析】模拟执行程序框图,依次写出每次循环得到的的值,当,退出循环,输出结果.【题目详解】程序运行过程如下:,;,;,;,;,;,;,退出循环,输出结果为,故选:A.【答案点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.11、D【答案解析】构造函数,利用导数分析出这两个函数在区间上均为减函数,由得出,分、三种情况讨论,利用放缩法结合函数的单调性
11、推导出或,再利用余弦函数的单调性可得出结论.【题目详解】构造函数,则,所以,函数、在区间上均为减函数,当时,则,;当时,.由得.若,则,即,不合乎题意;若,则,则,此时,由于函数在区间上单调递增,函数在区间上单调递增,则,;若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【答案点睛】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.12、A【答案解析】试题分析:由题意得,若:,若:,若:,综上可知,同理可知,故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解
12、题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为考点:几何体的体积的计算14、【答案解析】取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得, 由等腰直角三角形的性质,得
13、,根据面面垂直的性质得平面,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【题目详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【答案点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.15、【答案解析】由定义可知三点共线,即,通过整理可得,继而可求出正确答案.【题目详解】解:根据题意,由定义可知:三点共线.故可得:,即
14、,整理得:,故可以选择等.故答案为: .【答案点睛】本题考查了两点的斜率公式,考查了推理能力,考查了运算能力.本题关键是分析出三点共线.16、 【答案解析】将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【题目详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项的系数为.故答案为:;.【答案点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【答案解析】(1)取中点,连接,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【题目详解】解析:(1)取中点,连接,由已知可得,侧面是菱形,即,平面,平面平面.(2)设,则,建立如图所示空间直角坐