收藏 分享(赏)

2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc

上传人:g****t 文档编号:16330 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.50MB
下载 相关 举报
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第1页
第1页 / 共18页
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第2页
第2页 / 共18页
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第3页
第3页 / 共18页
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第4页
第4页 / 共18页
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第5页
第5页 / 共18页
2023学年辽宁省全国大联考高考数学一模试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数下列命题:函数的图象关于原点对称;函数是周期函数;当时,函数取最大值;函数的图象与函数的图象没有公共点,其中正确命题的序号是( )ABCD2设复数满足,则( )A1B-

2、1CD3执行如图所示的程序框图,则输出的的值是( )A8B32C64D1284已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD5已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD6已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )A第一象限B第二象限C第三象限D第四象限7已知集合,则()ABCD8在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D9已知i为虚数单位,则( )ABCD10已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )ABCD11公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论

3、:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )A米B米C米D米12对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,.下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数1234567种子数43352210A2B3C3.5D4二、填空题:本题共4小题,每小题

4、5分,共20分。13已知、为正实数,直线截圆所得的弦长为,则的最小值为_.14已知实数满足则的最大值为_.15下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.16在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集18(12分)在极坐标

5、系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.19(12分)如图,在多面体中,四边形是菱形,平面,是的中点.()求证:平面平面;()求直线与平面所成的角的正弦值.20(12分)已知A是抛物线E:y22px(p0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x1于M,N两点.(1)若|MN|2,求抛物线E的方程;(2)若0p1,抛物线E与圆(x5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.21(12分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调

6、查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050

7、.0250.0100.0050.001 2.7063.8415.0246.6357.87910.82822(10分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来

8、的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据奇偶性的定义可判断出正确;由周期函数特点知错误;函数定义域为,最值点即为极值点,由知错误;令,在和两种情况下知均无零点,知正确.【题目详解】由题意得:定义域为,为奇函数,图象关于原点对称,正确;为周期函数,不是周期函数,不是周期函数,错误;,不是最值,错误;令,当时,此时与无交点;当时,此时与无交点;综上所述:与无

9、交点,正确.故选:.【答案点睛】本题考查函数与导数知识的综合应用,涉及到函数奇偶性和周期性的判断、函数最值的判断、两函数交点个数问题的求解;本题综合性较强,对于学生的分析和推理能力有较高要求.2、B【答案解析】利用复数的四则运算即可求解.【题目详解】由.故选:B【答案点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.3、C【答案解析】根据给定的程序框图,逐次计算,结合判断条件,即可求解.【题目详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【答案点

10、睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【答案解析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【题目详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【答案点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题5、B【答案解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选

11、项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,化简得.构造函数,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【答案点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形

12、面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.6、B【答案解析】分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,所以复数在复平面内对应的点位于第二象限.故选:B.【答案点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.7、A【答案解析】根据对数性质可知,再根据集合的交集运算即可求解.【题目详解】,集合,由交集运算可得.故选:A.【答案点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.8、B【答案解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【题目

13、详解】解:因为,所以因为所以,即,时故选:【答案点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.9、A【答案解析】根据复数乘除运算法则,即可求解.【题目详解】.故选:A.【答案点睛】本题考查复数代数运算,属于基础题题.10、C【答案解析】由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解【题目详解】先画出图形,由球心到各点距离相等可得,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,故选:C【答案点睛】本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题11、D

14、【答案解析】根据题意,是一个等比数列模型,设,由,解得,再求和.【题目详解】根据题意,这是一个等比数列模型,设,所以,解得,所以 .故选:D【答案点睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.12、C【答案解析】根据表中数据,即可容易求得中位数.【题目详解】由图表可知,种子发芽天数的中位数为,故选:C.【答案点睛】本题考查中位数的计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先根据弦长,半径,弦心距之间的关系列式求得,代入整理得,利用基本不等式求得最值.【题目详解】解:圆的圆心为,则到直线的距离为,由直线截圆所得的弦长为可得,整理得,解得或(舍去),令,又,当且仅当时,等号成立,则.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2