收藏 分享(赏)

2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc

上传人:la****1 文档编号:16356 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.61MB
下载 相关 举报
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第1页
第1页 / 共21页
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第2页
第2页 / 共21页
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第3页
第3页 / 共21页
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第4页
第4页 / 共21页
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第5页
第5页 / 共21页
2023学年湖南省益阳市高考仿真模拟数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD22已知m,n是两条不同的直线,是两个不同的平面,给出四个命题:若,则;若,则;若,则;若,则其中正确的是( )ABCD3函数(, , )的部分图象如

2、图所示,则的值分别为( )A2,0B2, C2, D2, 4若集合,则( )ABCD5如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD6已知集合,定义集合,则等于( )ABCD7一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD8已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )ABCD9已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD10函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )A向左

3、平移个单位B向右平移个单位C向左平移个单位D向右平移个单位11已知函数是偶函数,当时,函数单调递减,设,则的大小关系为()ABCD12如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知若存在,使得成立的最大正整数为6,则的取值范围为_.14已知三棱锥中,则该三棱锥的外接球的表面积是_.15已知F为双曲线的右焦点,过F作C的渐近线的垂线FD,D为垂足,且(O为坐标原点),则C的离心率为_.16若,则_三、解答

4、题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.18(12分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x2,且两焦点与短轴的一个顶点构成等腰直角三角形(1)求椭圆C的方程;(2)假设直线l:与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;若原点O到直线l的距离为1,并且,当时,求OAB的面积S的范围19(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.20(12分)已知,(1)求的最小正周期

5、及单调递增区间;(2)已知锐角的内角,的对边分别为,且,求边上的高的最大值21(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线 交于M,N,线段MN的中点为E.求证:;记,的面积分别为、,求证:为定值.22(10分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的

6、四个选项中,只有一项是符合题目要求的。1、D【答案解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【题目详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到轴的距离为.故选:D.【答案点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.2、D【答案解析】根据面面垂直的判定定理可判断;根据空间面面平行的判定定理可判断;根据线面平行的判定定理可判断;根据面面垂直的判定定理可判断.【题目详解】对于,若,两平面相交,但不一定垂直,故错误;对于,若,则,故正确;对于,若,当

7、,则与不平行,故错误;对于,若,则,故正确;故选:D【答案点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.3、D【答案解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【题目详解】由函数图象可知:,函数的图象过点,则故选【答案点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果4、A【答案解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【题目详解】解:由集合,解得,则故选:【答案点睛】本题考查了并集及其运算,分式不等式

8、的解法,熟练掌握并集的定义是解本题的关键属于基础题5、B【答案解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【题目详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【答案点睛】本题考查二次函数的图象及函数的零点,属于基础题.6、C【答案解析】根据定义,求出,即可求出结论.【题目详解】因为集合,所以,则,所以.故选:C.【答案点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.7、B【答案解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面

9、的中心即为球心.【题目详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【答案点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.8、A【答案解析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断【题目详解】图象上相邻两个极值点,满足,即,且,当时,为函数的一个极小值点,而故选:【答案点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用9、B【答案解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得

10、,所以,解得(负值舍去),所以椭圆的离心率故选B10、A【答案解析】依题意有的周期为.而,故应左移.11、A【答案解析】根据图象关于轴对称可知关于对称,从而得到在上单调递增且;再根据自变量的大小关系得到函数值的大小关系.【题目详解】为偶函数 图象关于轴对称图象关于对称时,单调递减 时,单调递增又且 ,即本题正确选项:【答案点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.12、D【答案解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,

11、所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意得,分类讨论作出函数图象,求得最值解不等式组即可.【题目详解】原问题等价于,当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:

12、;当时,函数图象如图此时,则,解得:;综上,满足条件的取值范围为.故答案为:【答案点睛】本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.14、【答案解析】将三棱锥补成长方体,设,设三棱锥的外接球半径为,求得的值,然后利用球体表面积公式可求得结果.【题目详解】将三棱锥补成长方体,设,设三棱锥的外接球半径为,则,由勾股定理可得,上述三个等式全部相加得,因此,三棱锥的外接球面积为.故答案为:.【答案点睛】本题考查三棱锥外接球表面积的计算,根据三棱锥对棱长相等将三棱锥补成长方体是解答的关键,考查推理能力,属于中等题.15、2【答案解析】求出焦点

13、到渐近线的距离就可得到的等式,从而可求得离心率【题目详解】由题意,一条渐近线方程为,即, ,由得,故答案为:2.【答案点睛】本题考查求双曲线的离心率,解题关键是求出焦点到渐近线的距离,从而得出一个关于的等式16、【答案解析】因为,所以,又,所以,则,所以三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【答案解析】运用矩阵定义列出方程组求解矩阵【题目详解】由特征值、特征向量定义可知,即,得同理可得解得,.因此矩阵【答案点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单18、(1);(2);.【答案解析】(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域【题目详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以,又由右准线方程为,得到,解得,所以 所以,椭圆的方程为 (2)设,而,则, , 因为点都在椭圆上,所以,将下式两边同时乘以再减去上式,解得, 所以 由原点到直线的距离为,得,化简得: 联立直线的方程与椭圆的方程:,得设,则,且 ,所以的面积

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2