1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的展开式中,含项的系数为( )ABCD2已知双曲线的右焦点为,过原点的直线与双曲线的左、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD3函数的图象如图所示,为了得
2、到的图象,可将的图象( )A向右平移个单位B向右平移个单位C向左平移个单位D向左平移个单位4以下关于的命题,正确的是A函数在区间上单调递增B直线需是函数图象的一条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象5已知平面向量,则实数x的值等于( )A6B1CD6如图,在四边形中,则的长度为( )ABCD7已知,复数,且为实数,则( )ABC3D-38如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD9已知函数,且关于的方程有且只有一个实数
3、根,则实数的取值范围( )ABCD10如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A在内总存在与平面平行的线段B平面平面C三棱锥的体积为定值D可能为直角三角形11已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )ABCD12已知数列中,(),则等于( )ABCD2二、填空题:本题共4小题,每小题5分,共20分。13已知,是平面向量,是单位向量.若,且,则的取值范围是_.14已知函数,若方程的解为,(),则_;_15若在上单调递减,则的取值范围是_16在棱长为的
4、正方体中,是面对角线上两个不同的动点.以下四个命题:存在两点,使;存在两点,使与直线都成的角;若,则四面体的体积一定是定值;若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.18(12分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.
5、19(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.20(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用
6、促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体数据如下表,表中的 :根据上表数据计算的值;已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附:附:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.21(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.22(10分)已知向量, .(1)求的最小正周期;(2)若的内角的对边分别为,且,求的面积.2
7、023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数【题目详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题2、D【答案解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,设,则,根据对称性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【答案点睛】本
8、题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.3、C【答案解析】根据正弦型函数的图象得到,结合图像变换知识得到答案.【题目详解】由图象知:,.又时函数值最大,所以.又,从而,只需将的图象向左平移个单位即可得到的图象,故选C.【答案点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求4、D【答案解析】利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【答案点睛】本题考查了三角函
9、数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.5、A【答案解析】根据向量平行的坐标表示即可求解.【题目详解】,即,故选:A【答案点睛】本题主要考查了向量平行的坐标运算,属于容易题.6、D【答案解析】设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【题目详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【答案点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.7、B【答案解析】把和 代入再由复数代数形式的乘法运
10、算化简,利用虚部为0求得m值【题目详解】因为为实数,所以,解得.【答案点睛】本题考查复数的概念,考查运算求解能力.8、D【答案解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【题目详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【答案点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.9、B【答案解析】根据条件可知方程有且
11、只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可【题目详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,故选:B【答案点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题10、D【答案解析】A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【题目详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确; B项,如图:当M、N分别在
12、BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若DMN为直角三角形,则必是以MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以DMN不可能为直角三角形,故错误.故选D【答案点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.11
13、、D【答案解析】设,利用余弦定理,结合双曲线的定义进行求解即可.【题目详解】设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:,因此双曲线的渐近线方程为:.故选:D【答案点睛】本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.12、A【答案解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【题目详解】解:,(),数列是以3为周期的周期数列,故选:A.【答案点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
14、先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解【题目详解】由是单位向量若,设,则,又,则,则,则,又,所以,(当或时取等)即的取值范围是,故答案为:,【答案点睛】本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平14、 【答案解析】求出在 上的对称轴,依据对称性可得的值;由可得,依据可求出的值.【题目详解】解:令,解得 因为,所以 关于 对称.则.由,则由可知,又因为 ,所以,则,即故答案为: ;.【答案点睛】本题考查了三角函数的对称轴,考查了诱导公式,考查了同角三角函数的基本关系.本题的易错点在于没有正确判断的取值范围,导致求出.在求的对称轴时,常用整体代