收藏 分享(赏)

2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc

上传人:sc****y 文档编号:16413 上传时间:2023-01-06 格式:DOC 页数:19 大小:2.13MB
下载 相关 举报
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第1页
第1页 / 共19页
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第2页
第2页 / 共19页
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第3页
第3页 / 共19页
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第4页
第4页 / 共19页
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第5页
第5页 / 共19页
2023学年衡水市重点中学高考冲刺模拟数学试题(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1定义在R上的函数,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )ABCD2复数(为虚数单位),则等于( )A3BC2D3在中,为中点,且,若,则( )ABC

2、D4已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )ABCD5为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )A乙的数据分析素养优于甲B乙的数学建模素养优于数学抽象素养C甲的六大素养整体水平优于乙D甲的六大素养中数据分析最差6函数与在上最多有n个交点,交点分别为(,n),则( )A7B8C9D107已知三棱锥PABC的顶点都在球O的球面上,PA,PB,AB4,CAC

3、B,面PAB面ABC,则球O的表面积为( )ABCD8函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A函数的最小正周期是B函数的图象关于点成中心对称C函数在单调递增D函数的图象向右平移后关于原点成中心对称9若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD10点在所在的平面内,且,则( )ABCD11若直线经过抛物线的焦点,则( )ABC2D12设非零向量,满足,且与的夹角为,则“”是“”的( )A充分非必要条件B必要非充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13如图,椭圆:的离心率为,F是的右

4、焦点,点P是上第一角限内任意一点,若,则的取值范围是_14若实数满足不等式组则目标函数的最大值为_15已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为_.16已知函数,对于任意都有,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学

5、的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.18(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.19(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.20(12分)从抛物线C:()外一点作该抛物线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)求证:四边形是平行

6、四边形.四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.21(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.22(10分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可【题目详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,所以选项成立;,比离对称轴远,可得

7、,选项成立;,可知比离对称轴远,选项成立;,符号不定,无法比较大小,不一定成立故选:【答案点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、D【答案解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【题目详解】,所以,故选:D.【答案点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.3、B【答案解析】选取向量,为基底,由向量线性运算,求出,即可求得结果.【题目详解】, ,.故选:B.【答案点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.4、A【答案

8、解析】在中,由余弦定理,得到,再利用即可建立的方程.【题目详解】由已知,在中,由余弦定理,得,又,所以,故选:A.【答案点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.5、C【答案解析】根据题目所给图像,填写好表格,由表格数据选出正确选项.【题目详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【答案点睛】本题考查统计问题,考查数据处理能力和应用意识.6、C【答案解析】根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【题目详解】由题可知:直线

9、过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【答案点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.7、D【答案解析】由题意画出图形,找出PAB外接圆的圆心及三棱锥PBCD的外接球心O,通过求解三角形求出三棱锥PBCD的外接球的半径,则答案可求.【题目详解】如图;设AB的中点为D;PA,PB,AB4,PAB为直角三角形,且斜边为AB,故其外接圆半径为:rABAD2;设外接球球心为O;CACB,面PAB面ABC,CDAB可得CD面PAB;且DC.O在CD上;故有:AO2OD2+AD2R2(R)

10、2+r2R;球O的表面积为:4R24.故选:D.【答案点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.8、B【答案解析】根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案【题目详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期, 不妨令,由周期,所以,又,所以,所以,令,解得,当时,即函数的一个对称中心为,即函数的图象关于点成中心对称故选B【答案点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解

11、是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题9、C【答案解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【题目详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【答案点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.10、D【答案解析】确定点为外心,代入化简得到,再根据计算得到答案.【题目详解】由可知,点为外心,则,又,所以因为,联立方程可得,因为,所以,即故选:【答案点睛】本题考查了向量模长的计算,意在考查学生的计算能力.11、B【答案解析】计算抛物线的交点为,代入计算得

12、到答案.【题目详解】可化为,焦点坐标为,故.故选:.【答案点睛】本题考查了抛物线的焦点,属于简单题.12、C【答案解析】利用数量积的定义可得,即可判断出结论【题目详解】解:,解得,解得, “”是“”的充分必要条件故选:C【答案点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果【题目详解】设,则,由,得,代入椭圆方程,得,化简得恒成立,由此得,即,故故答案为:【答案点睛】此题考

13、查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 14、12【答案解析】画出约束条件的可行域,求出最优解,即可求解目标函数的最大值【题目详解】根据约束条件画出可行域,如下图,由,解得目标函数,当过点时,有最大值,且最大值为故答案为:【答案点睛】本题考查线性规划的简单应用,属于基础题15、64【答案解析】由题意先求得的值,再令求出展开式中所有项的系数和.【题目详解】的展开式中项的系数与项的系数分别为135与,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【答案点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.16、【答案解析】由条件得到函数的对称性,从而得到结果【题目详解】ff,x是函数f(x)2sin(x)的一条对称轴f2.【答案点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)乙同学正确(2)分布列见解析, 【答案解析】(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2