收藏 分享(赏)

2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc

上传人:la****1 文档编号:16504 上传时间:2023-01-06 格式:DOC 页数:22 大小:4.60MB
下载 相关 举报
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第1页
第1页 / 共22页
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第2页
第2页 / 共22页
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第3页
第3页 / 共22页
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第4页
第4页 / 共22页
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第5页
第5页 / 共22页
2023学年福建省福州市金山中学高考数学倒计时模拟卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医

2、费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元2某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、),根据该图,以下结论一定正确的是( )A年该工厂的棉签产量最少B这三年中每年抽纸的产量相差不明显C三年累计下来产量最多的是口罩D口罩的产量逐年增加3一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD4某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D905秦九韶是我国南宋时期的

3、数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为ABCD6已知 ,且是的充分不必要条件,则的取值范围是( )ABCD7若,则函数在区间内单调递增的概率是( )A B C D8某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD9如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD10设实数、满足约束条件,则的最小值为( )A2B24C16D1411在中,内角的平分线交边于点,则的面积是

4、( )ABCD12第24届冬奥会将于2023年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知向量,若向量与向量平行,则实数_14已知数列递增的等比数列,若,则_.15一个房间的地面是由12个正方形所组成,如图所示.今想用长方形瓷砖铺满地面,已知每一块长方形瓷砖可以覆盖两块相邻的正方形,即或,则用6块瓷

5、砖铺满房间地面的方法有_种.16在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C,使得ABC的面积为5,则实数a的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱柱中,底面为正方形,平面(1)证明:平面;(2)若,求二面角的余弦值18(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.19(12分)在平面直角坐标系xOy中,椭圆C:的右准线方程为x2,且两焦点与短轴的一个顶点构成等腰直角三角形(1)求椭圆C的方程

6、;(2)假设直线l:与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;若原点O到直线l的距离为1,并且,当时,求OAB的面积S的范围20(12分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.21(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.22(10分)已知四棱锥中,底面为等腰梯形,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余

7、弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【题目详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【答案

8、点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.2、C【答案解析】根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【题目详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【答案点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.3、B【答案解析】还原几何体可知原几何体为半个圆柱和一个四棱锥

9、组成的组合体,分别求解两个部分的体积,加和得到结果.【题目详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【答案点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.4、A【答案解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【题目详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支出在的同学的频率为故选:A【答案点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属

10、于基础题.5、C【答案解析】由题意,模拟程序的运行,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值【题目详解】解:初始值,程序运行过程如下表所示:,跳出循环,输出的值为其中得故选:【答案点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题6、D【答案解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【题目详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【答案点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.7

11、、B【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.8、C【答案解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C9、A【答案解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【题目详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【答案点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.10、D【答案解析】做出满足条件的可行域,根据图形

12、即可求解.【题目详解】做出满足的可行域,如下图阴影部分,根据图象,当目标函数过点时,取得最小值,由,解得,即,所以的最小值为.故选:D.【答案点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求线性目标函数的最值,属于基础题.11、B【答案解析】利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【答案点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.12

13、、B【答案解析】根据比例关系求得会旗中五环所占面积,再计算比值.【题目详解】设会旗中五环所占面积为,由于,所以,故可得.故选:B.【答案点睛】本题考查面积型几何概型的问题求解,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题可得,因为向量与向量平行,所以,解得14、【答案解析】,建立方程组,且,求出,进而求出的公比,即可求出结论.【题目详解】数列递增的等比数列,解得,所以的公比为,.故答案为:.【答案点睛】本题考查等比数列的性质、通项公式,属于基础题.15、11【答案解析】将图形中左侧的两列瓷砖的形状先确定,再由此进行分类,在每一类里面又分按两种形状的瓷砖的数量

14、进行分类,在其中会有相同元素的排列问题,需用到“缩倍法”. 采用分类计数原理,求得总的方法数.【题目详解】(1)先贴如图这块瓷砖,然后再贴剩下的部分,按如下分类:5个: ,3个,2个:,1个,4个:,(2)左侧两列如图贴砖,然后贴剩下的部分:3个:,1个,2个:,综上,一共有(种).故答案为:11.【答案点睛】本题考查了分类计数原理,排列问题,其中涉及到相同元素的排列,用到了“缩倍法”的思想.属于中档题.16、(,)【答案解析】求出AB的长度,直线方程,结合ABC的面积为5,转化为圆心到直线的距离进行求解即可【题目详解】解:AB的斜率k,|AB|5,设ABC的高为h,则ABC的面积为5,S|AB|hh5,即h2,直线AB的方程为yax,即4x3y+3a0若圆x2+y29上有且仅有四个

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2