收藏 分享(赏)

2023学年重庆市万州三中高考数学押题试卷(含解析).doc

上传人:sc****y 文档编号:16693 上传时间:2023-01-06 格式:DOC 页数:19 大小:2.05MB
下载 相关 举报
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第1页
第1页 / 共19页
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第2页
第2页 / 共19页
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第3页
第3页 / 共19页
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第4页
第4页 / 共19页
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第5页
第5页 / 共19页
2023学年重庆市万州三中高考数学押题试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线的渐近线方程为( )ABCD2已知向量,若,则( )ABC-8D83已知函数在上有两个零点,则的取值范围是( )ABCD4中国古代数学著作算法统宗中有这样一个问题;“三百七十八里关,

2、初行健步不为难,次后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其意思为:“有一个人走了378里路,第一天健步走行,从第二天起脚痛每天走的路程是前一天的一半,走了6天后到达目的地,求该人每天走的路程.”由这个描述请算出这人第四天走的路程为( )A6里B12里C24里D48里5已知复数z满足(其中i为虚数单位),则复数z的虚部是( )AB1CDi6若关于的不等式有正整数解,则实数的最小值为( )ABCD7已知函数的图像向右平移个单位长度后,得到的图像关于轴对称,当取得最小值时,函数的解析式为( )ABCD8已知命题,;命题若,则,下列命题为真命题的是()ABCD9已知点是抛物线

3、:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为( )ABCD10已知函数,则( )AB1C-1D011等比数列的前项和为,若,则( )ABCD12已知双曲线的一条渐近线方程为,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则( )A9B5C2或9D1或5二、填空题:本题共4小题,每小题5分,共20分。13若曲线(其中常数)在点处的切线的斜率为1,则_.14若实数满足不等式组,则的最小值是_15若变量,满足约束条件则的最大值是_.16在中,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)

4、已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.18(12分)已知函数.(1)求的极值;(2)若,且,证明:.19(12分)这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病

5、例数量(单位:万人)之间的关系如下表:日期1234567全国累计报告确诊病例数量(万人)1.41.72.02.42.83.13.5(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系? (2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.参考数据:,.参考公式:相关系数回归方程中斜率和截距的最小二乘估计公式分别为:,.20(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统

6、计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?21(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直

7、线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的面积.22(10分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【题目详解】双曲线得,则其渐近线方程为,整理得.故选:A【答案点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.2、B【答案解

8、析】先求出向量,的坐标,然后由可求出参数的值.【题目详解】由向量,则,又,则,解得.故选:B【答案点睛】本题考查向量的坐标运算和模长的运算,属于基础题.3、C【答案解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【题目详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【答案点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题4、C【答案解析】设第一天走里,则是以为首项,以为公比的等比数

9、列,由题意得,求出(里,由此能求出该人第四天走的路程【题目详解】设第一天走里,则是以为首项,以为公比的等比数列,由题意得:,解得(里,(里故选:C【答案点睛】本题考查等比数列的某一项的求法,考查等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题5、A【答案解析】由虚数单位i的运算性质可得,则答案可求.【题目详解】解:,则化为,z的虚部为.故选:A.【答案点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.6、A【答案解析】根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值【题目详解】因为不等式有正整数解,所以,于是转化为,

10、 显然不是不等式的解,当时,所以可变形为令,则,函数在上单调递增,在上单调递减,而,所以当时,故,解得故选:A【答案点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题7、A【答案解析】先求出平移后的函数解析式,结合图像的对称性和得到A和.【题目详解】因为关于轴对称,所以,所以,的最小值是.,则,所以.【答案点睛】本题主要考查三角函数的图像变换及性质.平移图像时需注意x的系数和平移量之间的关系.8、B【答案解析】解:命题p:x0,ln(x+1)0,则命题p为真命题,则p为假命题;取a=1,b=2,ab,但a2

11、b2,则命题q是假命题,则q是真命题pq是假命题,pq是真命题,pq是假命题,pq是假命题故选B9、D【答案解析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a丨AF2丨丨AF1丨(1)p,利用双曲线的离心率公式求得e【题目详解】直线F2A的直线方程为:ykx,F1(0,),F2(0,),代入抛物线C:x22py方程,整理得:x22pkx+p20,4k2p24p20,解得:k1,A(p,),设双曲线方程为:1,丨AF1丨p,丨AF2丨p,2a丨AF2丨丨AF1丨( 1)p,2cp,离心率e1,故选:D【答案点睛】本题考查抛物线及双曲线的方程及简单性质,考查

12、转化思想,考查计算能力,属于中档题10、A【答案解析】由函数,求得,进而求得的值,得到答案.【题目详解】由题意函数,则,所以,故选A.【答案点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.11、D【答案解析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,所以,故解得:,从而公比;那么,故选D考点:等比数列12、B【答案解析】根据渐近线方程求得,再利用双曲线定义即可求得.【题目详解】由于,所以,又且,故选:B.【答案点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.二

13、、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用导数的几何意义,由解方程即可.【题目详解】由已知,所以,解得.故答案为:.【答案点睛】本题考查导数的几何意义,考查学生的基本运算能力,是一道基础题.14、-1【答案解析】作出可行域,如图:由得,由图可知当直线经过A点时目标函数取得最小值,A(1,0)所以-1故答案为-115、9【答案解析】做出满足条件的可行域,根据图形,即可求出的最大值.【题目详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【答案点睛】本题考查二元一次不等式组表示平面区域,利用数形结合求

14、线性目标函数的最值,属于基础题.16、1【答案解析】由已知利用余弦定理可得,即可解得的值【题目详解】解:,由余弦定理,可得,整理可得:,解得或(舍去)故答案为:1【答案点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【答案解析】(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值【题目详解】(1)函数由条件得函数的定义域:,当时,所以:,时,当时,当,时,则函数的单调

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2