1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD2水平放置的,用斜二测画法作出的直观图是如图所示的,其中 ,则绕AB所在直线旋转一周后形成的几何体的表面积为
2、( )ABCD3已知,则( )A5BC13D4已知命题p:若,则;命题q:,使得”,则以下命题为真命题的是( )ABCD5设,则( )ABCD6已知复数(为虚数单位,),则在复平面内对应的点所在的象限为( )A第一象限B第二象限C第三象限D第四象限7函数在内有且只有一个零点,则a的值为( )A3B3C2D28已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD9若复数满足,则的虚部为( )A5BCD-510已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()ABCD11已知 ,且是的充分不必要条件,则的取值
3、范围是( )ABCD12如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知实数,对任意,有,且,则_.14若展开式中的常数项为240,则实数的值为_.15已知,则满足的的取值范围为_16已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)椭圆的左、右焦点分别为,椭圆上两动点使得四边形为平行四边形,且平行四边形的周长和最大面积分别为8和.(1)求椭圆的标准方程;(2)设直线与椭圆的另一
4、交点为,当点在以线段为直径的圆上时,求直线的方程.18(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.19(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在2544岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好30
5、05.开放且包容250合计10001000(1)根据以上数据,预测400万2544岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.050
6、0.0100.001k3.8416.63510.82820(12分)曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若直线与曲线,的交点分别为、(、异于原点),当斜率时,求的最小值.21(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求的值.22(10分)已知函数,(1)若,求实数的值(2)若,求正实数的取值范围2023学年模拟测试卷参考答案(含详细解析)
7、一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据程序框图知当时,循环终止,此时,即可得答案.【题目详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【答案点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.2、B【答案解析】根据斜二测画法的基本原理,将平面直观图还原为原几何图形,可得,,绕AB所在直线旋转一周后形成的几何体是两个相同
8、圆锥的组合体,圆锥的侧面展开图是扇形根据扇形面积公式即可求得组合体的表面积.【题目详解】根据“斜二测画法”可得,绕AB所在直线旋转一周后形成的几何体是两个相同圆锥的组合体,它的表面积为.故选:【答案点睛】本题考查斜二测画法的应用及组合体的表面积求法,难度较易.3、C【答案解析】先化简复数,再求,最后求即可.【题目详解】解:,故选:C【答案点睛】考查复数的运算,是基础题.4、B【答案解析】先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【题目详解】,因为,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B. 【答案点睛】本题考查真假命题的概念,以及真值
9、表的应用,解题的关键是判断出命题的真假,难度较易.5、C【答案解析】试题分析:,故C正确考点:复合函数求值6、B【答案解析】分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,所以复数在复平面内对应的点位于第二象限.故选:B.【答案点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.7、A【答案解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【题目详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【答案点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函
10、数图像和性质是解题的关键,属于中档题.8、D【答案解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【题目详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【答案点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.9、C【答案解析】把已知等式变形,再由复数代数形式的乘除运算
11、化简得答案【题目详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【答案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题10、B【答案解析】先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【题目详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【答案点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.11、D【答案解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【题目详解】由题意知:可化简为,所
12、以中变量取值的集合是中变量取值集合的真子集,所以.【答案点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.12、D【答案解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【题目详解】解:,又解得,所以故选:D【答案点睛】本题考查了平面向量的基本定理及其意义,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、-1【答案解析】由二项式定理及展开式系数的求法得,又,所以,令得:,所以,得解【题目详解】由,且,则,又,所以,令得:,所以,故答案为:【答案点睛】本题考查了二项式定理及展开式系数的求法,意在考查学生对这些知识的理解掌握水平14
13、、3【答案解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【题目详解】解:二项式的展开式中的常数项为,解得.故答案为:【答案点睛】本题考查二项式展开式中常数项的计算,属于基础题.15、【答案解析】将f(x)写成分段函数形式,分析得f(x)为奇函数且在R上为增函数,利用奇偶性和单调性解不等式即可得到答案.【题目详解】根据题意,f(x)x|x|,则f(x)为奇函数且在R上为增函数,则f(2x1)+f(x)0f(2x1)f(x)f(2x1)f(x)2x1x,解可得x,即x的取值范围为,+);故答案为:,+)【答案点睛】本题考查分段函数的奇偶性与单调性的判定以及应用,注意分析f(x)的奇
14、偶性与单调性16、【答案解析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【题目详解】方法1:由题意可知,由中位线定理可得,设可得,联立方程可解得(舍),点在椭圆上且在轴的上方,求得,所以方法2:焦半径公式应用解析1:由题意可知,由中位线定理可得,即求得,所以.【答案点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【答案解析】(1)根据题意计算得到,得到椭圆方