1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求
2、的。1已知函数,集合,则( )ABCD2下列命题为真命题的个数是( )(其中,为无理数);.A0B1C2D33执行如图所示的程序框图,则输出的的值为( ) ABCD4设f(x)是定义在R上的偶函数,且在(0,+)单调递减,则( )ABCD5已知函数满足,当时,则( )A或B或C或D或6已知角的终边经过点,则的值是A1或B或C1或D或7一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( )ABCD8已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是( )ABCD9已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )A
3、向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度10已知,则 ()ABCD11过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D12下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )A16B17C18D19二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,若点的横坐标为1,则点的横坐标为_.14正方形的边长为2,圆内切于正方形,为
4、圆的一条动直径,点为正方形边界上任一点,则的取值范围是_.15已知集合A,B,若AB中有且只有一个元素,则实数a的值为_16甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点AB,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.18(12分)已知椭圆与抛物线有共同的焦
5、点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.19(12分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,.(1)求证:平面.(2)求二面角的大小.20(12分)已知,.(1)当时,证明:;(2)设直线是函数在点处的切线,若直线也与相切,求正整数的值.21(12分)运输一批海鲜,可在汽车、火车、飞机三种运输工具中选择,它们的速度分别为60千米/小时、120千米/小时、600千米/小时,每千米的运费分别为20元、10元、50元.这批海鲜在运输过程中每小时的
6、损耗为m元(),运输的路程为S(千米).设用汽车、火车、飞机三种运输工具运输时各自的总费用(包括运费和损耗费)分别为(元)、(元)、(元).(1)请分别写出、的表达式;(2)试确定使用哪种运输工具总费用最省.22(10分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【题目详解】,,故选C【
7、答案点睛】本题主要考查了集合的基本运算,难度容易.2、C【答案解析】对于中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【题目详解】由题意,对于中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以不正确;对于中,设函数,则,当时,函数单调递增,当时,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【答案点睛】本题主要考
8、查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.3、B【答案解析】列出循环的每一步,进而可求得输出的值.【题目详解】根据程序框图,执行循环前:,执行第一次循环时:,所以:不成立继续进行循环,当,时,成立,由于不成立,执行下一次循环,成立,成立,输出的的值为.故选:B【答案点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型4、D【答案解析】利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【题目详
9、解】是偶函数,而,因为在上递减,即故选:D【答案点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.5、C【答案解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【题目详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【答案点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.6、B【答案解析】根据三角函数的定义求得后可得结论【题目详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【答案点睛】利用三角函数的定义求一个角的三角函
10、数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可7、A【答案解析】将正四面体补成正方体,通过正方体的对角线与球的半径关系,求解即可【题目详解】解:如图,将正四面体补形成一个正方体,正四面体的外接球与正方体的外接球相同,四面体所有棱长都是4,正方体的棱长为,设球的半径为,则,解得,所以,故选:A【答案点睛】本题主要考查多面体外接球问题,解决本题的关键在于,巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化,属于中档题8、C【答案解析】在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对
11、称中心为可得即可得到的最小值.【题目详解】直线是曲线的一条对称轴.,又.平移后曲线为.曲线的一个对称中心为.,注意到故的最小值为.故选:C.【答案点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.9、C【答案解析】依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【题目详解】解:由已知得,是的一条对称轴,且使取得最值,则,故选:C.【答案点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.10、B【答案解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【题目详解】,本题正确选项:【答
12、案点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力11、C【答案解析】由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题12、B【答案解析】由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.【题目详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输
13、出 ,则不符合题意,排除;若输出,则,符合题意.故选:B.【答案点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】当时,得,或,依题意可得,可求得,继而可得答案【题目详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点故答案为:1【答案点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题14、【答
14、案解析】根据向量关系表示,只需求出的取值范围即可得解.【题目详解】由题可得:,故答案为:【答案点睛】此题考查求平面向量数量积的取值范围,涉及基本运算,关键在于恰当地对向量进行转换,便于计算解题.15、2【答案解析】利用AB中有且只有一个元素,可得,可求实数a的值.【题目详解】由题意AB中有且只有一个元素,所以,即.故答案为:.【答案点睛】本题主要考查集合的交集运算,集合交集的运算本质是存同去异,侧重考查数学运算的核心素养.16、【答案解析】求出所有可能,找出符合可能的情况,代入概率计算公式【题目详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为【答案点睛】本题考查古典概型及其概率计算公式,属于基础题