收藏 分享(赏)

2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc

上传人:g****t 文档编号:18648 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.85MB
下载 相关 举报
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第1页
第1页 / 共18页
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第2页
第2页 / 共18页
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第3页
第3页 / 共18页
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第4页
第4页 / 共18页
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第5页
第5页 / 共18页
2023届河北省正定县第一中学高考仿真模拟数学试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋

2、巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )ABCD2定义在上的函数满足,且为奇函数,则的图象可能是( )ABCD3已知函数,若对任意,都有成立,则实数的取值范围是( )ABCD4若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( )A1B-3C1或D-3或5已知数列满足,且 ,则数列的通项公式为( )ABCD6已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件7已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D38已知在中,角的对边分别为,若

3、函数存在极值,则角的取值范围是( )ABCD9在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形103本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )ABCD11已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD12甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13在三棱锥中,三条侧棱两两垂直,则三棱锥外接球的表面积的最小值为_.14已知,则_,_.

4、15已知函数,若关于x的方程有且只有两个不相等的实数根,则实数a的取值范围是_.16已知函数若关于的不等式的解集为,则实数的所有可能值之和为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的内角,的对边分别为,(1)若,证明:(2)若,求的面积18(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生

5、和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)19(12分)a,b,c分别为ABC内角A,B,C的对边.已知a3,且B60.(1)求ABC的面积; (2)若D,E是BC边上的三等分点,求.20(12分)设函数.()讨论函数的单调性;()若函数有两个极值点,求证:.21(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.22(10分)已知函数(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选

6、项中,只有一项是符合题目要求的。1、D【答案解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面积公式和体积公式是需要熟记的.2、D【答案解析】根据为奇函数,得到函数关于中心对称,排除,计算排除,得到答案.【题目详解】为

7、奇函数,即,函数关于中心对称,排除.,排除.故选:.【答案点睛】本题考查了函数图像的识别,确定函数关于中心对称是解题的关键.3、D【答案解析】先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【答案点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.4、D【答案解析】由题得,解方程即得k的值.【题目详解】由题得,解方程即得k=-3或.故答案为:D【答案点睛】(1

8、)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离.5、D【答案解析】试题分析:因为,所以,即,所以数列是以为首项,公比为的等比数列,所以,即,所以数列的通项公式是,故选D考点:数列的通项公式6、B【答案解析】根据诱导公式化简再分析即可.【题目详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【答案点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.7、C【答案解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线

9、和离心率;2.抛物线的准线方程;8、C【答案解析】求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论【题目详解】,.若存在极值,则,又.又故选:C【答案点睛】本题考查导数与极值,考查余弦定理掌握极值存在的条件是解题关键9、C【答案解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【题目详解】解:因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:【答案点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题10、D【答案解析】把5本书编号,然后用列举法列出所有基本事

10、件计数后可求得概率【题目详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【答案点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率11、C【答案解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【题目详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【答案点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.12、A【答案解析】依题

11、意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积【题目详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方记外接球半径为,当时,故答案为:【答案点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和14、 【答案解析】利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出

12、和的值,进而利用两角差的余弦公式求出的值.【题目详解】,.故答案为:;.【答案点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大15、【答案解析】画出函数的图象,再画的图象,求出一个交点时的的值,然后平行移动可得有两个交点时的的范围【题目详解】函数的图象如图所示:因为方程有且只有两个不相等的实数根,所以图象与直线有且只有两个交点即可,当过点时两个函数有一个交点,即时,与函数有一个交点,由图象可知,直线向下平移后有两个交点,可得,故答案为:【答案点睛】本题主要考查了方程的跟与函数的图象交点的转化,数形结合的思想,属

13、于中档题16、【答案解析】由分段函数可得不满足题意;时,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和【题目详解】解:由函数,可得的增区间为,时,时,当关于的不等式的解集为,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点综上可得的所有值的和为1故答案为:1【答案点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【答案解析】(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;

14、(2)由余弦定理和已知条件解得,然后由面积公式计算【题目详解】解:(1)由余弦定理得,由得到,由正弦定理得因为,所以(2)由题意及余弦定理可知,由得,即,联立解得,所以【答案点睛】本题考查利用正余弦定理解三角形考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边解题时要注意对条件的分析,确定选用的公式18、(1)(2)详见解析(3)初中生平均参加公益劳动时间较长【答案解析】(1)由图表直接利用随机事件的概率公式求解;(2)X的所有可能取值为0,1,2,3.由古典概型概率公式求概率,则分布列可求;(3)由图表直接判断结果.【题目详解】(1)100名学生中共有男生48名,其中共有20人参加公益劳动时间在,设男生中随机抽取一人,抽到的男生参加公益劳动时间在的事件为,那么;(2)的所有可

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2