收藏 分享(赏)

上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc

上传人:sc****y 文档编号:18653 上传时间:2023-01-06 格式:DOC 页数:21 大小:2.39MB
下载 相关 举报
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第1页
第1页 / 共21页
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第2页
第2页 / 共21页
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第3页
第3页 / 共21页
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第4页
第4页 / 共21页
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第5页
第5页 / 共21页
上海市罗店中学2023学年高考适应性考试数学试卷(含解析).doc_第6页
第6页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为ABCD2已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )ABCD3已知等边ABC内接于圆:x2+ y2=1,且P是圆上一点,则的

2、最大值是( )AB1CD24某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”现已知当时,该命题不成立,那么( )A当时,该命题不成立B当时,该命题成立C当时,该命题不成立D当时,该命题成立5已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件6已知变量的几组取值如下表:12347若与线性相关,且,则实数( )ABCD7 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件8设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C

3、的离心率为ABC2D9已知函数,若关于的不等式恰有1个整数解,则实数的最大值为( )A2B3C5D810已知,是平面内三个单位向量,若,则的最小值( )ABCD511已知函数()的部分图象如图所示.则( )ABCD12已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知盒中有2个红球,2个黄球,且每种颜色的两个球均按,编号,现从中摸出2个球(除颜色与编号外球没有区别),则恰好同时包含字母,的概率为_.14已知是抛物线的焦点,过作直线与相交于两点,且

4、在第一象限,若,则直线的斜率是_15点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为_.16现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,是线段的中点.()求证:平面;()若,求直线与平面所成角的正弦值.18(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.19(12分)中的内角,的对边分别是,若,.(1)求;(2)若,点为边上一点,且,求的面积.20(

5、12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.21(12分)已知椭圆C:(ab0)过点(0,),且满足a+b3(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是

6、否为定值?并说明理由22(10分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值【题

7、目详解】设,联立,得则,则由,得 设,则 ,则点到直线的距离从而令 当时,;当时,故,即的最小值为本题正确选项:【答案点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.2、D【答案解析】由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,由此即可得到本题答案.【题目详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,所以是函数的一条对称轴,故选:D【答案点睛】本题主要考查利用和

8、差公式恒等变形,以及考查三角函数的周期性和对称性.3、D【答案解析】如图所示建立直角坐标系,设,则,计算得到答案.【题目详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【答案点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.4、C【答案解析】写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【题目详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【答案点睛】本题考查逆否命题与原

9、命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.5、B【答案解析】根据诱导公式化简再分析即可.【题目详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【答案点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.6、B【答案解析】求出,把坐标代入方程可求得【题目详解】据题意,得,所以,所以故选:B【答案点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值7、B【答案解析】先求出满足的值,然后根据充分必要条件的定义判断【题目详解】由得,即, ,因此

10、“”是“,”的必要不充分条件故选:B【答案点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断8、A【答案解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【答案点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来9、D【答案解析】画出函数的

11、图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【题目详解】解:函数,如图所示当时,由于关于的不等式恰有1个整数解因此其整数解为3,又,则当时,则不满足题意;当时,当时,没有整数解当时,至少有两个整数解综上,实数的最大值为故选:D【答案点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.10、A【答案解析】由于,且为单位向量,所以可令,再设出单位向量的坐标,再将坐标代入中,利用两点间的距离的几何意义可求出结果【题目详解】解:设,则,从而,等号可取到故选:A【答案点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题11、C【答案解析】由图

12、象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【题目详解】依题意,即,解得;因为所以,当时,.故选:C.【答案点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.12、D【答案解析】由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【题目详解】由题意,设每一行的和为 故因此:故故选:D【答案点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据组合数得出所有情况数及两个球颜色不相同的情况数

13、,让两个球颜色不相同的情况数除以总情况数即为所求的概率【题目详解】从袋中任意地同时摸出两个球共种情况,其中有种情况是两个球颜色不相同;故其概率是故答案为:【答案点睛】本题主要考查了求事件概率,解题关键是掌握概率的基础知识和组合数计算公式,考查了分析能力和计算能力,属于基础题.14、【答案解析】作出准线,过作准线的垂线,利用抛物线的定义把抛物线点到焦点的距离转化为点到准线的距离,利用平面几何知识计算出直线的斜率【题目详解】设是准线,过作于,过作于,过作于,如图,则,直线斜率为故答案为:【答案点睛】本题考查抛物线的焦点弦问题,解题关键是利用抛物线的定义,把抛物线上点到焦点距离转化为该点到准线的距离

14、,用平面几何方法求解15、1【答案解析】求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得【题目详解】设,由题意,即,故答案为:1【答案点睛】本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值本题属于基础题16、【答案解析】由题意容积,求导研究单调性,分析即得解.【题目详解】由题意:容积,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【答案点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()证明见详解;().【答案解析】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2