收藏 分享(赏)

上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc

上传人:la****1 文档编号:18691 上传时间:2023-01-06 格式:DOC 页数:18 大小:1.79MB
下载 相关 举报
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第1页
第1页 / 共18页
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第2页
第2页 / 共18页
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第3页
第3页 / 共18页
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第4页
第4页 / 共18页
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第5页
第5页 / 共18页
上海市高桥中学2023学年高考临考冲刺数学试卷(含解析).doc_第6页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知变量的几组取值如下表:12347若与线性相关,且,则实数( )ABCD2已知集合,则( )ABCD3已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的

2、取值范围是( )ABCD4在关于的不等式中,“”是“恒成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5定义在上的奇函数满足,若,则( )AB0C1D26甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A丙被录用了B乙被录用了C甲被录用了D无法确定谁被录用了7已知,则下列关系正确的是( )ABCD82019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株

3、,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )ABCD9已知实数x,y满足约束条

4、件,若的最大值为2,则实数k的值为( )A1BC2D10已知集合,若AB,则实数的取值范围是( )ABCD11甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D512若,则实数的大小关系为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若在上单调递减,则的取值范围是_14已知复数(为虚数单位),则的共轭复数是_,_15设为锐角,若,则的值为_16假设10公里长跑,甲跑出优秀的概率为,乙跑出优秀的概率为,丙跑出优秀的概率为,则甲、乙、丙三人同时参加10公里

5、长跑,刚好有2人跑出优秀的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的零点个数;(2)证明:当时,.18(12分)在中,角的对边分别为,且(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值19(12分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.20(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数.).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,曲线与直线其中的一个交点为,且点极径.极角(1)求曲线的极坐标方程与点的极坐标;(2)已

6、知直线的直角坐标方程为,直线与曲线相交于点(异于原点),求的面积.21(12分)如图,在四棱锥中,底面是菱形,是边长为2的正三角形,为线段的中点(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积22(10分)已知函数,.(1)求函数的极值;(2)当时,求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】求出,把坐标代入方程可求得【题目详解】据题意,得,所以,所以故选:B【答案点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数

7、值2、C【答案解析】由题意和交集的运算直接求出.【题目详解】 集合,.故选:C.【答案点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.3、B【答案解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【题目详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【答案点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题

8、中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.4、C【答案解析】讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【题目详解】解:当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【答案点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.5、C【答案解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【题目详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于

9、,所以,.所以,又,所以.故选:C【答案点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.6、C【答案解析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【题目详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【答案点睛】本题考查了逻辑推理能力,属基础题.7、A【答案解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【题目详解】因为,所以,综上可得.故选:A【答案点睛】本题考查了换底

10、公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题8、A【答案解析】根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【题目详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,.即设,则当且仅当即时取等号,即.故选:A【答案点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.9、B【

11、答案解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【题目详解】可行域如图中阴影部分所示,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【答案点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.10、D【答案解析】先化简,再根据,且AB求解.【题目详解】因为,又因为,且AB,所以.故选:D【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.11、B【答案解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C

12、(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B. 12、A【答案解析】将化成以 为底的对数,即可判断 的大小关系;由对数函数、指数函数的性质,可判断出 与1的大小关系,从而可判断三者的大小关系.【题目详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【答案点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断

13、大小;若真数和底数都不相同,则可与中间值如1,0比较大小.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得导数在恒成立,解出即可【题目详解】解:由题意,当时,显然,符合题意;当时,在恒成立,故答案为:【答案点睛】本题主要考查利用导数研究函数的单调性,属于中档题14、 【答案解析】直接利用复数的乘法运算化简,从而得到复数的共轭复数和的模【题目详解】,则复数的共轭复数为,且.故答案为:;.【答案点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础的计算题15、【答案解析】为锐角,故.16、【答案解析】分跑出优秀的人为:甲、乙和甲、丙和乙、丙三种情况分别计

14、算再求和即可.【题目详解】刚好有2人跑出优秀有三种情况:其一是只有甲、乙两人跑出优秀的概率为;其二是只有甲、丙两人跑出优秀的概率为;其三是只有乙、丙两人跑出优秀的概率为,三种情况相加得.即刚好有2人跑出优秀的概率为.故答案为:【答案点睛】本题主要考查了分类方法求解事件概率的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【答案解析】(1)求出,分别以当,时,结合函数的单调性和最值判断零点的个数.(2)令,结合导数求出;同理可求出满足,从而可得,进而证明.【题目详解】解析:(1),当时,单调递减,此时有1个零点;当时,无零点;当时,由得,由得,在单调递减,在单调递增,在处取得最小值,若,则,此时没有零点;若,则,此时有1个零点;若,则,求导易得,此时在,上各有1个零点.综上可得时,没有零点,或时,有1个零点,时

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2