收藏 分享(赏)

2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc

上传人:sc****y 文档编号:18713 上传时间:2023-01-06 格式:DOC 页数:24 大小:2.30MB
下载 相关 举报
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第1页
第1页 / 共24页
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第2页
第2页 / 共24页
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第3页
第3页 / 共24页
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第4页
第4页 / 共24页
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第5页
第5页 / 共24页
2023届浙江省湖州三校高考冲刺押题(最后一卷)数学试卷(含解析).doc_第6页
第6页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林

2、”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁2定义在上的奇函数满足,若,则( )AB0C1D23在中,为边上的中线,为的中点,且,则( )ABCD4已知函数,不等式对恒成立,则的取值范围为( )ABCD5已知,为圆上的动点,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( )ABCD6 “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )A6B7C8D97已知实数x,y满足,则的最小值等于( )ABCD8已知函,则的最小值为

3、( )AB1C0D9设是两条不同的直线,是两个不同的平面,则下列命题正确的是( )A若,则B若,则C若,则D若,则10已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD11正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )ABCD12已知实数,满足,则的最大值等于( )A2BC4D8二、填空题:本题共4小题,每小题5分,共20分。13数据的标准差为_14已知函数,若关于的方程恰有四个不同的解,则实数的取值范围是_.15若且时,不等式恒成立,则实数a的取值范围为_16将函数的图象向左平移个单位长度,得到一个偶函数图象,则_三、解答题:共70分。解答应写出

4、文字说明、证明过程或演算步骤。17(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值18(12分)随着科技的发展,网络已逐渐融入了人们的生活网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50100女性70100合计(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(2)现从所抽取的

5、女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差参考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819(12分)已知椭圆经过点,离心率为(1)求椭圆的方程;(2)经过点且斜率存在的直线交椭圆于两点,点与点关于坐标原点对称连接求证:存在实数,使得成立20(12分)如图,底面ABCD是边长为2的菱形,平面ABCD,BE与平

6、面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.21(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程;若时,求实数;试问的值是否与的大小无关,并证明你的结论22(10分)已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小

7、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据演绎推理进行判断【题目详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【答案点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础2、C【答案解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【题目详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【答案点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3、A【答案解析】根据向量的线性运算可得,利用

8、及,计算即可.【题目详解】因为,所以,所以,故选:A【答案点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.4、C【答案解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【题目详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【答案点睛】本题考查了根据函数单调性和奇偶性解不等式,参数分离求最值是解题的关键.5、A【答案解析】由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【题目详解】如图,连接OP,A

9、M,由题意得,点M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【答案点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.6、B【答案解析】模拟程序运行,观察变量值可得结论【题目详解】循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【答案点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论7、D【答案解析】设,去绝对值,根据余弦函数的性质即可求出【题目详解】因为实数,满足,设,恒成立,故则的最小值等于.故选:【答案点睛】本题考查了椭圆的参数方程、三角函数的图象和性质,考查

10、了运算能力和转化能力,意在考查学生对这些知识的理解掌握水平8、B【答案解析】,利用整体换元法求最小值.【题目详解】由已知,又,故当,即时,.故选:B.【答案点睛】本题考查整体换元法求正弦型函数的最值,涉及到二倍角公式的应用,是一道中档题.9、C【答案解析】根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【题目详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,但,错误;对于,由,知:,又,正确;对于,设,则当为内与平行的直线时,错误.故选:.【答案点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌

11、握情况,属于基础题.10、B【答案解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,化简得.构造函数,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选

12、:B【答案点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.11、D【答案解析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【题目详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【答案点睛】本题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键12、D【答案解析】画出可行域,计算出原点到可行域上

13、的点的最大距离,由此求得的最大值.【题目详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【答案点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先计算平均数再求解方差与标准差即可.【题目详解】解:样本的平均数, 这组数据的方差是 标准差,故答案为:【答案点睛】本题主要考查了标准差的计算,属于基础题.14、【答案解析】设,判断 为偶函数,考虑x0时,的解析式和零点个数, 利用导数分析函数的单调性,作函数大致图象,即可得到的范围.【题目详解】设,则在是偶函数,当时,由得,记,故函数在增,而,所以在减,在增,当时,当时,因此的图象为因此实数的取值范围是.【答案点睛】本题主要考查了函数的零点的个数问题,涉及构造函数,函数的奇偶性,利用导数研究函数单调性,考查了数形结合思想方法,以及化简运算能力和推理能力,属于难题.15、【答案解析】将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【题目详解】因为,所以,所以,所以,所以或,当时,对且不成立,当时,取,显然不满足,所以,所以,解得;当时,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2