1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在中,点M是边的中点,将沿着AM翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A重心B垂心C内心D外心2( )ABCD3设a=log73,c=30.7,则a,b,c的大小关系是()ABCD4已知函数,满足对任意的实数,都有成立,则实数的取值范围为( )ABCD5方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD6是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD7在
3、平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )ABCD8设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D9设 ,则()A10B11C12D1310设a,b都是不等于1的正数,则“”是“”的()A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件11已知,则下列关系正确的是( )ABCD12已知集合,则集合的非空子集个数是( )A2B3C7D8二、填空题:本题共4小题,每小题5分,共20分。13已知,满足约束条件,则的最大值为_14(5分)
4、已知,且,则的值是_15设全集,集合,则集合_.16若函数,则_;_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和18(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.19(12分)如图所示,直角梯形ABCD中,四边形EDCF为矩形,平面平面ABCD(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的
5、长,若不存在,请说明理由20(12分)在三棱锥中,是边长为的正三角形,平面平面,M、N分别为、的中点.(1)证明:;(2)求三棱锥的体积.21(12分)数列满足.(1)求数列的通项公式;(2)设,为的前n项和,求证:.22(10分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据题意到两个平面的距离相等,根据等体积法得到,得到答案.【
6、题目详解】二面角与二面角的平面角相等,故到两个平面的距离相等.故,即,两三棱锥高相等,故,故,故为中点.故选:.【答案点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.2、D【答案解析】利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【题目详解】由所以,所以原式所以原式故故选:D【答案点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.3、D【答案解析】,得解【题目详解】,所以,故选D【答案点睛】比较不同数的大小,找中间量作比较是一种常见的方法4、B【答案解析】由题意可知函数为上为减函数,可知函数为减函数,且,由此可解得实数的取值
7、范围.【题目详解】由题意知函数是上的减函数,于是有,解得,因此,实数的取值范围是故选:B.【答案点睛】本题考查利用分段函数的单调性求参数,一般要分析每支函数的单调性,同时还要考虑分段点处函数值的大小关系,考查运算求解能力,属于中等题.5、D【答案解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【题目详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【答案点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题
8、.6、B【答案解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【题目详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【答案点睛】考查线面所成
9、的角的求法,及正切值为定值时的情况,属于中等题7、A【答案解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【题目详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【答案点睛】本题考查三角函数的定义及诱导公式,属于基础题.8、A【答案解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【答案点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半
10、径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来9、B【答案解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【题目详解】f(x),f(5)ff(1)f(9)ff(15)f(13)1故选:B【答案点睛】本题主要考查了分段函数中求函数的值,属于基础题10、C【答案解析】根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可【题目详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C【答案点睛】本题考查
11、必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题11、A【答案解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【题目详解】因为,所以,综上可得.故选:A【答案点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题12、C【答案解析】先确定集合中元素,可得非空子集个数【题目详解】由题意,共3个元素,其子集个数为,非空子集有7个故选:C【答案点睛】本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据题意,画出可行域,将
12、目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【题目详解】可行域如图所示,易知当,时,的最大值为故答案为:9.【答案点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.14、【答案解析】由于,且,则,得,则15、【答案解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【题目详解】由题可知,集合A中集合B的补集,则故答案为:【答案点睛】本题考查集合的交集与补集运算,属于基础题.16、0 1 【答案解析】根据分段函数解析式,代入即可求解.【题目详解】函数,所以,.故答案为:0;1.【答案点睛】本题考查了分段函数求值的简单应用,属于基础题.三、解答题:共70
13、分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【答案解析】(1)由化为,利用数列的通项公式和前n项和的关系,得到是首项为,公差为的等差数列求解.(2)由(1)得到,再利用错位相减法求解.【题目详解】(1)可以化为,又时,数列从开始成等差数列,代入得是首项为,公差为的等差数列,.(2)由(1)得,两式相减得,.【答案点睛】本题主要考查数列的通项公式和前n项和的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.18、(1)证明见解析(2)【答案解析】(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,函数在上单调递增,在上单调递减,而,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围【题目详解】(1)若,则,设,则,故函数是奇函数当时,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,又,所以当时,满足题意;当时,有,与条件矛盾,舍去; 当时,令,则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,因此在上单调递增.,所以.于是,当时,得,与条件