1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD2在中,内角所对的边分别为,若依次成等差数列,则( )A依次成等差数列B依次成等差数列C依次成等差数列D依次成等差数列3是虚数单位,则( )A1B
2、2CD4已知函数,当时,不等式恒成立,则实数a的取值范围为( )ABCD5甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D6某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A72种B36种C24种D18种7设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若|PQ|=|OF|,则C的离心率为ABC2D8关于的不等式的解集是,则关于的不等式
3、的解集是( )ABCD9设函数,则,的大致图象大致是的( )ABCD10展开项中的常数项为A1B11C-19D5111函数(, , )的部分图象如图所示,则的值分别为( )A2,0B2, C2, D2, 12下列判断错误的是( )A若随机变量服从正态分布,则B已知直线平面,直线平面,则“”是“”的充分不必要条件C若随机变量服从二项分布: , 则D是的充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13若在上单调递减,则的取值范围是_14若且时,不等式恒成立,则实数a的取值范围为_15已知数列为正项等比数列,则的最小值为_.16若变量,满足约束条件则的最大值为_.三、解答题:共70
4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正实数满足 .(1)求 的最小值.(2)证明:18(12分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值19(12分)在锐角三角形中,角的对边分别为已知成等差数列,成等比数列(1)求的值;(2)若的面积为求的值20(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系21(12分)已知函数.()求的值;()若,且,求的值.22(10分)已知函数 , (1)求函数的单调区间;(2)当时,判断函数,()有几个
5、零点,并证明你的结论;(3)设函数,若函数在为增函数,求实数的取值范围2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【题目详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【答案点睛】本题考查利用函数的单调性与奇偶性解不
6、等式,注意分析函数的奇偶性,属于中等题.2、C【答案解析】由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【题目详解】依次成等差数列, 正弦定理得,由余弦定理得 ,即依次成等差数列,故选C.【答案点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到3、C【答案解析】由复数除法的运
7、算法则求出,再由模长公式,即可求解.【题目详解】由.故选:C.【答案点睛】本题考查复数的除法和模,属于基础题.4、D【答案解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【题目详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【答案点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.5、A【答案解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.6、B【答案解析】根据条件2名内科医生,每个村一名,3名外科医生和3名护
8、士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有,其余的分到乙村,若甲村有2外科,1名护士,则有,其余的分到乙村,则总共的分配方案为2(9+9)=218=36种,故选:B.【答案点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7、A【答案解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【题目详
9、解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【答案点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来8、A【答案解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【题目详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【答案点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.9、B【答案解析】采用排除法:通过
10、判断函数的奇偶性排除选项A;通过判断特殊点的函数值符号排除选项D和选项C即可求解.【题目详解】对于选项A:由题意知,函数的定义域为,其关于原点对称,因为,所以函数为奇函数,其图象关于原点对称,故选A排除;对于选项D:因为,故选项D排除;对于选项C:因为,故选项C排除;故选:B【答案点睛】本题考查利用函数的奇偶性和特殊点函数值符号判断函数图象;考查运算求解能力和逻辑推理能力;选取合适的特殊点并判断其函数值符号是求解本题的关键;属于中档题、常考题型.10、B【答案解析】展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【题目详解】展开式中的项为常数项,有3种情况:(1)5个括号都出
11、1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【答案点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.11、D【答案解析】由题意结合函数的图象,求出周期,根据周期公式求出,求出,根据函数的图象过点,求出,即可求得答案【题目详解】由函数图象可知:,函数的图象过点,则故选【答案点睛】本题主要考查的是的图像的运用,在解答此类题目时一定要挖掘图像中的条件,计算三角函数的周期、最值,代入已知点坐标求出结果12、D【答案解析】根据正态分布、空间中点线面的位置关
12、系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解.【题目详解】对于选项,若随机变量服从正态分布,根据正态分布曲线的对称性,有,故选项正确,不符合题意;对于选项,已知直线平面,直线平面,则当时一定有,充分性成立,而当时,不一定有,故必要性不成立,所以“”是“”的充分不必要条件,故选项正确,不符合题意;对于选项,若随机变量服从二项分布: , 则,故选项正确,不符合题意;对于选项,仅当时有,当时,不成立,故充分性不成立;若,仅当时有,当时,不成立,故必要性不成立.因而是的既不充分也不必要条件,故选项不正确,符合题意.故选:D【答案点睛】本题考查正态分
13、布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得导数在恒成立,解出即可【题目详解】解:由题意,当时,显然,符合题意;当时,在恒成立,故答案为:【答案点睛】本题主要考查利用导数研究函数的单调性,属于中档题14、【答案解析】将不等式两边同时平方进行变形,然后得到对应不等式组,对的取值进行分类,将问题转化为二次函数在区间上恒正、恒负时求参数范围,列出对应不等式组,即可求解出的取值范围.【题目详解】因为,所以,所以,所以,所以或,当时,对且不成立,
14、当时,取,显然不满足,所以,所以,解得;当时,取,显然不满足,所以,所以,解得,综上可得的取值范围是:.故答案为:.【答案点睛】本题考查根据不等式恒成立求解参数范围,难度较难.根据不等式恒成立求解参数范围的两种常用方法:(1)分类讨论法:分析参数的临界值,对参数分类讨论;(2)参变分离法:将参数单独分离出来,再以函数的最值与参数的大小关系求解出参数范围.15、27【答案解析】利用等比数列的性质求得,结合其下标和性质和均值不等式即可容易求得.【题目详解】由等比数列的性质可知,则,.当且仅当时取得最小值.故答案为:.【答案点睛】本题考查等比数列的下标和性质,涉及均值不等式求和的最小值,属综合基础题.16、7【答案解析】画出不等式组表示的平面区域,数形结合,即可容易求得目标函数的最大值.【题目详解】作出不等式组所表示的平面区域,如下图阴影部分所示.观察可知,当直线过点时,有最大值,.故答案为:.【答案点睛】本题考查二次不等式组与平面区域、线性规划,主