收藏 分享(赏)

云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc

上传人:sc****y 文档编号:18768 上传时间:2023-01-06 格式:DOC 页数:22 大小:2.20MB
下载 相关 举报
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第1页
第1页 / 共22页
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第2页
第2页 / 共22页
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第3页
第3页 / 共22页
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第4页
第4页 / 共22页
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第5页
第5页 / 共22页
云南省昆明实验中学2023学年高考压轴卷数学试卷(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并

2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1的图象如图所示,若将的图象向左平移个单位长度后所得图象与的图象重合,则可取的值的是( )ABCD2我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的体积公式).A2寸B3寸C4寸D5寸3已知的值域为,当正数a,b满足时,则的最小值为( )AB5CD94已知双曲线的右焦点为,过原点的直线与双曲线的左

3、、右两支分别交于两点,延长交右支于点,若,则双曲线的离心率是( )ABCD5已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD6已知向量,则与的夹角为( )ABCD7已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD8三国时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )ABCD9若的

4、展开式中的系数为150,则( )A20B15C10D2510如图所示,矩形的对角线相交于点,为的中点,若,则等于( )ABCD11设命题p:1,n22n,则p为( )ABCD12若与互为共轭复数,则( )A0B3C1D4二、填空题:本题共4小题,每小题5分,共20分。13定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则_,_.14若双曲线C:(,)的顶点到渐近线的距离为,则的最小值_.15如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得已知山高,则山高_16已知函数,则_;满足的

5、的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,为自然对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。18(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.19(12分)如图,在斜三棱柱中,侧面与侧面都是菱形, ,()求证:;()若,求平面与平面所成的锐二面角的余弦值20(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范

6、围.21(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)22(10分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据图象求得函数的解析式,即可得出函数的解析式,然后求出变换后的函数解析式,结合题意可得出关于的等式,即可得出结果.【题目详解】由图象可得,函数的最小正周期为,则,取,则,可得,当时,

7、.故选:B.【答案点睛】本题考查利用图象求函数解析式,同时也考查了利用函数图象变换求参数,考查计算能力,属于中等题.2、B【答案解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.3、A【答案解析】利用的值域为,求出m,再变形,利用1的代换,即可求出的最小值.【题目详解】解:的值域为,当且仅当时取等号,的最小值为.故选:A.【答案点睛】本题主要考查了对数复合函数的值域运用,同时也考查了基本不等式中“1的运用”,属于中档题.4、D【答案解析】设双曲线的左焦点为,连接,设,则,和中,利用勾股定理计算得到答案.【题目详解】设双曲线的左焦点为,连接,设,则,根据对称

8、性知四边形为矩形,中:,即,解得;中:,即,故,故.故选:.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5、C【答案解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【题目详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【答案点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.6、B【答案解析】由已知向量的坐标,利用平

9、面向量的夹角公式,直接可求出结果.【题目详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【答案点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.7、B【答案解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【题目详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【答案点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函

10、数图象相切得出参数的值,然后得出参数范围8、A【答案解析】分析:设三角形的直角边分别为1,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角

11、坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型9、C【答案解析】通过二项式展开式的通项分析得到,即得解.【题目详解】由已知得,故当时,于是有,则.故选:C【答案点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.10、A【答案解析】由平面向量基本定理,化简得,所以,即可求解,得到答案【题目详解】由平面向量基本定理,化简,所以,即,故选A【答案点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解

12、答的关键,着重考查了运算与求解能力,数基础题11、C【答案解析】根据命题的否定,可以写出:,所以选C.12、C【答案解析】计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【答案点睛】本题主要考查了复数的运算,共轭复数的概念.二、填空题:本题共4小题,每小题5分,共20分。13、2 4 【答案解析】根据函数为偶函数且,所以的周期为,的实数根是函数和函数的图象的交点的横坐标,在平面直角坐标系中画出函数图象,根据函数的对称性可得所有实数根的和为,从而可得参数的值,最后求出函数的解析式,代入求值即可.【题目详解】解:因为为偶函数且,所以的周期为.因为时,所以可作出在区间上

13、的图象,而方程的实数根是函数和函数的图象的交点的横坐标,结合函数和函数在区间上的简图,可知两个函数的图象在区间上有六个交点.由图象的对称性可知,此六个交点的横坐标之和为,所以,故.因为,所以.故.故答案为:;【答案点睛】本题考查函数的奇偶性、周期性、对称性的应用,函数方程思想,数形结合思想,属于难题.14、【答案解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【题目详解】由双曲线C:(,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【答案点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本

14、不等式求最值,注意验证等号成立的条件,属于基础题.15、1【答案解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,故答案为1考点:正弦定理的应用16、 【答案解析】首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【题目详解】解:因为,所以,当时,满足题意,;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【答案点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见证明;(2) 【答案解析】(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性及值域,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 知识点总结

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2