1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数的图象过点,则它的一条对称轴方程可能是( )ABCD2已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )ABCD3设点,不共线,则“”是“”( )A充分不必要条件B必要不
2、充分条件C充分必要条件D既不充分又不必要条件4设曲线在点处的切线方程为,则( )A1B2C3D45已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 6设a=log73,c=30.7,则a,b,c的大小关系是()ABCD7已知集合,则( )ABCD8已知向量,若,则( )ABCD9已知函数在上的值域为,则实数的取值范围为( )ABCD10已知函数,若,则a的取值范围为( )ABCD11若为虚数单位,则复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限12已知,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在
3、正方体中,分别为棱的中点,则直线与直线所成角的正切值为_.14在长方体中,为的中点,则点到平面的距离是_.15甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为_.16展开式的第5项的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面P
4、AC所成的角最大时,求直线MA与平面MBC所成角的正弦值.18(12分)已知函数.()若,求曲线在处的切线方程;()当时,要使恒成立,求实数的取值范围.19(12分)已知函数(),且只有一个零点.(1)求实数a的值;(2)若,且,证明:.20(12分)选修4-5:不等式选讲已知函数f(x)=log2(|x+1|+|x2|m)(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)2的解集是R,求m的取值范围21(12分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围22(10分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,若,求的最小
5、值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】把已知点坐标代入求出,然后验证各选项【题目详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【答案点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键2、D【答案解析】当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,根据图像得到答案.【题目详解】当时,故函数周期为,画出函数图像,如图所示:方程,即,即函数和有两个交点.,故
6、,.根据图像知:.故选:.【答案点睛】本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.3、C【答案解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【题目详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【答案点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.4、D【答案解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【题目详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【答案点睛】本题考查导数的几何意义,考查运算求解能力,是基础题5、D【答案解析】由成等差数列得,利用等
7、比数列的通项公式展开即可得到公比q的方程.【题目详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【答案点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练6、D【答案解析】,得解【题目详解】,所以,故选D【答案点睛】比较不同数的大小,找中间量作比较是一种常见的方法7、C【答案解析】解不等式得出集合A,根据交集的定义写出AB【题目详解】集合Ax|x22x30x|1x3,故选C【答案点睛】本题考查了解不等式与交集的运算问题,是基础题8、A【答案解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【题目详解】, ,
8、解得:故选:【答案点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.9、A【答案解析】将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.【题目详解】当时,又,由在上的值域为 解得:本题正确选项:【答案点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.10、C【答案解析】求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式【题目详解】由得,在时,是增函数,是增函数,是增函数,是增函数,由得,解得故选:C.【答案点睛】本题考查函
9、数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解11、D【答案解析】根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【题目详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【答案点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题12、D【答案解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【题目详解】因为,所以,所以是减函数,又因为,所以,所
10、以,所以A,B两项均错;又,所以,所以C错;对于D,所以,故选D.【答案点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得【题目详解】如图,连接,分别为棱的中点,又正方体中,即是平行四边形,(或其补角)就是直线与直线所成角,是等边三角形,60,其正切值为故答案为:【答案点睛】本题考查异面直线所成的
11、角,解题关键是根据定义作出异面直线所成的角14、【答案解析】利用等体积法求解点到平面的距离【题目详解】由题在长方体中,所以,所以,设点到平面的距离为,解得故答案为:【答案点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.15、【答案解析】出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【题目详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【答案点睛】本题考查求古典概率的概率
12、问题,属于基础题.16、70【答案解析】根据二项式定理的通项公式,可得结果.【题目详解】由题可知:第5项为故第5项的的系数为故答案为:70.【答案点睛】本题考查的是二项式定理,属基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【答案解析】(1) 设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,则平面,即可证得平面平面(2) 由线面成角的定义可知是直线与平面所成的角,且,最大即为最短时,即是的中点建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.【题目详解】(1)设AC的中点为O,连接BO,PO由题意,得,在中,O为
13、AC的中点,在中,平面,平面ABC,平面PAC,平面平面ABC(2)由(1)知,平面PAC,是直线BM与平面PAC所成的角,且,当OM最短时,即M是PA的中点时,最大由平面ABC,于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,则,设平面MBC的法向量为,直线MA与平面MBC所成角为,则由得:.令,得,即.则.直线MA与平面MBC所成角的正弦值为.【答案点睛】本题考查面面垂直的证明,考查线面成角问题,借助空间向量是解决线面成角问题的关键,难度一般.18、()()【答案解析】()求函数的导函数,即可求得切线的斜率,则切线方程得解;()构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【题目详解】()当时,则.所以.又,故所求切线方程为,即.()依题意,得,即恒成立.令,则.当时,因为,不合题意.当时,令,得,显然.令,得或;令,得.所以函数的单调递增区间是,单调递减区间是.当时,所以,只需,所以,所以实数的取值范围为.【答案点睛】本题考查利用导数的几何意义求切线方程,以及利用导数研究恒成立问题,属综合中档题.19、(1)(2)证明见解析【答案解析】(1)求导可得在上,在上,所以函数在时,取最小值,由函数只有一个零点,观察可知则有,即可求得结果.