1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设 ,则()A10B11C12D132给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;若一个平面经过另一个平面的垂线,则这两个平面相互垂直;垂直于同一直
2、线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是( )A和 B和 C和 D和3设全集为R,集合,则ABCD4函数的图象与函数的图象的交点横坐标的和为( )ABCD5集合的真子集的个数是( )ABCD6对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A或BC或D7若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( )ABCD8已知三点A(1,0),B(0, ),C(2,),则ABC外接圆的圆心到原点的距离为()ABCD9已知复数,则的虚部是( )ABCD1
3、10已知三棱柱( )ABCD11在正方体中,点、分别为、的中点,过点作平面使平面,平面若直线平面,则的值为( )ABCD12已知集合(),若集合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知半径为4的球面上有两点,球心为O,若球面上的动点C满足二面角的大小为,则四面体的外接球的半径为_.14已知双曲线(,)的左,右焦点分别为,过点的直线与双曲线的左,右两支分别交于,两点,若,则双曲线的离心率为_. 15抛物线的焦点坐标为_.16已知复数z112i,z2a+2i(其中i是虚数单位,aR)
4、,若z1z2是纯虚数,则a的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值18(12分)在平面直角坐标系中,已知椭圆:()的左、右焦点分别为、,且点、与椭圆的上顶点构成边长为2的等边三角形(1)求椭圆的方程;(2)已知直线与椭圆相切于点,且分别与直线和直线相交于点、试判断是否为定值,并说明理由19(12分)已知函数(1)若不等式有解,求实数的取值范围;(
5、2)函数的最小值为,若正实数,满足,证明:20(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.21(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,求证:(1)平面;(2)平面平面22(10分)已知函数,.(1)讨论的单调性;(2)当时,证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【题目详解】f(x),f(5)ff(1)f(9)ff(15)f(13)1
6、故选:B【答案点睛】本题主要考查了分段函数中求函数的值,属于基础题2、D【答案解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故错误;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故正确综上,真命题是.故选:D【答案点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题3、B【答案解析】分析:由题意首先求得,然后进行交
7、集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.点睛:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.4、B【答案解析】根据两个函数相等,求出所有交点的横坐标,然后求和即可.【题目详解】令,有,所以或.又,所以或或或,所以函数的图象与函数的图象交点的横坐标的和,故选B.【答案点睛】本题主要考查三角函数的图象及给值求角,侧重考查数学建模和数学运算的核心素养.5、C【答案解析】根据含有个元素的集合,有个子集,有个真子集,计算可得;【题目详解】解:集合含有个元素,则集合的真子集有(个),故选:C【答案点睛】考查列举法的定义,集
8、合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题6、C【答案解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【题目详解】由得,.令,则,令,解得,所以当时,则在内单调递增;当时,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【答案点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.7、C【答案解析】由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值【题目详
9、解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,则当最大时,求得,故选:C【答案点睛】本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题8、B【答案解析】选B.考点:圆心坐标9、C【答案解析】化简复数,分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【题目详解】,所以的虚部为.故选:C【答案点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.10、C【答案解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1
10、内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R11、B【答案解析】作出图形,设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,推导出,由线面平行的性质定理可得出,可得出点为的中点,同理可得出点为的中点,结合中位线的性质可求得的值.【题目详解】如下图所示:设平面分别交、于点、,连接、,取的中点,连接、,连接交于点,四边形为正方形,、分别为、的中点,则且,四边形为平行四边形,且,且,且,则四边形为平行四边形,平面,则存在直线平面,使得,若平面,则平面,又平面,则平面,此时,平面为平面,直线不可能与平面平行,所以,平面,平面,平面,平面平面,所以,四边形为平行四边形,可得,为
11、的中点,同理可证为的中点,因此,.故选:B.【答案点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.12、C【答案解析】根据题目中的基底定义求解.【题目详解】因为,所以能作为集合的基底,故选:C【答案点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设所在截面圆的圆心为,中点为,连接,易知即为二面角的平面角,可求出及,然后可判断出四面体外接球的球心在直线上,在中,结合,可求出四面体的外接球的半径.【题目详解】设所在截面圆的
12、圆心为,中点为,连接,OAOB,所以,ODAB,同理O1DAB,所以,即为二面角的平面角,因为,所以是等腰直角三角形,在中,由cos60,得,由勾股定理,得:,因为O1到A、B、C三的距离相等,所以,四面体外接球的球心在直线上,设四面体外接球半径为,在中,由勾股定理可得:,即,解得【答案点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题14、【答案解析】设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【题目详解】解:设,由双曲线的定义得出:,由图可知:,又,即,则
13、,为等腰三角形,设,则,即,解得:,则,解得:,解得:,在中,由余弦定理得:,即:,解得: ,即. 故答案为:.【答案点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.15、【答案解析】变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,所以焦点坐标为故答案为:【答案点睛】本题考查了抛物线的焦点坐标,属于简单题.16、-1【答案解析】由题意,令即可得解.【题目详解】z112i,z2a+2i,又z1z2是纯虚数,解得:a1故答案为:1【答案点睛】本题考查了复数的概念和运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间是(0,e),单调递减区间是(e,+)(2)【答案解析】(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f(x)lnxmx0有两个正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消参数m化简整理可得ln(x1x2)ln,设t,构造函数g(t)()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1x2的最大值【题目详解】(1)令m2,函数h(x),h(x),令h(x)0,解得xe,当x(0,e)时,h(x)0,当x