1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的是( )A点F的轨迹是一条线段B与BE是异面直线C与不可能平行D三棱锥的体积为定值2已
2、知函数()的部分图象如图所示.则( )ABCD3已知函数是奇函数,且,若对,恒成立,则的取值范围是( )ABCD4在中,角的对边分别为,若则角的大小为()ABCD5函数(其中,)的图象如图,则此函数表达式为( )ABCD6已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D7已知集合A0,1,B0,1,2,则满足ACB的集合C的个数为()A4B3C2D18设i为虚数单位,若复数,则复数z等于( )ABCD09在直角坐标系中,已知A(1,0),B(4,0),若直线x+my1=0上存在点P,使得|PA|=2|PB|,则正实
3、数m的最小值是( )AB3CD10已知,且,则的值为( )ABCD11函数(且)的图象可能为( )ABCD12设全集集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数为自然对数的底数)在和两处取得极值,且,则实数的取值范围是_14设全集,集合,则集合_.15已知集合,则_.16已知 ,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.18(12分)在中, .求边上的高.,这三个条件中任选一个,补充在上面问题中并作答.19(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩
4、阵.20(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.21(12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(
5、3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.02422(10分)已知函数(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断【题目详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点
6、、,连接、, ,平面,平面,平面同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点正确对于,平面平面,和平面相交,与是异面直线,正确对于,由知,平面平面,与不可能平行,错误对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:【答案点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题2、C【答案解析】由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【题目详解】依题意,即,解得;因为所以,当时,.故选:C.【答案点睛】本题主要考查了由三角函数的图象求解析式和已知函数
7、值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.3、A【答案解析】先根据函数奇偶性求得,利用导数判断函数单调性,利用函数单调性求解不等式即可.【题目详解】因为函数是奇函数,所以函数是偶函数.,即,又,所以,.函数的定义域为,所以,则函数在上为单调递增函数.又在上,所以为偶函数,且在上单调递增.由,可得,对恒成立,则,对恒成立,得,所以的取值范围是.故选:A.【答案点睛】本题考查利用函数单调性求解不等式,根据方程组法求函数解析式,利用导数判断函数单调性,属压轴题.4、A【答案解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【题目详解】解:,由正弦定理
8、可得:,故选A【答案点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题5、B【答案解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【题目详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【答案点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.6、B【答案解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【题目详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设
9、焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【答案点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.7、A【答案解析】由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【题目详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【答案点睛】考查集合并集运算,属于简单题.8、B【答案解析】根据复数除法的运算法则,即可求解.【题目详解】.故选:B.【答案点睛】本题考查复数的代数运算,属于基础题.9、D【答案解析】设点,由,得关于的方程.由题意,该方程有解,则,求出正实数m的
10、取值范围,即求正实数m的最小值.【题目详解】由题意,设点.,即,整理得,则,解得或.故选:.【答案点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.10、A【答案解析】由及得到、,进一步得到,再利用两角差的正切公式计算即可.【题目详解】因为,所以,又,所以,所以.故选:A.【答案点睛】本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.11、D【答案解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.12、A【答案解析】先求出,再与集合N求交集.【题目详解】由已知,又,所以.故选:
11、A.【答案点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先将函数在和两处取得极值,转化为方程有两不等实根,且,再令,将问题转化为直线与曲线有两交点,且横坐标满足,用导数方法研究单调性,作出简图,求出时,的值,进而可得出结果.【题目详解】因为,所以,又函数在和两处取得极值,所以是方程的两不等实根,且,即有两不等实根,且,令,则直线与曲线有两交点,且交点横坐标满足,又,由得,所以,当时,即函数在上单调递增;当,时,即函数在和上单调递减;当时,由得,此时,因此,由得.故答案为【答案点睛】本题主要考查导数的应用,已知
12、函数极值点间的关系求参数的问题,通常需要将函数极值点,转化为导函数对应方程的根,再转化为直线与曲线交点的问题来处理,属于常考题型.14、【答案解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【题目详解】由题可知,集合A中集合B的补集,则故答案为:【答案点睛】本题考查集合的交集与补集运算,属于基础题.15、【答案解析】根据并集的定义计算即可.【题目详解】由集合的并集,知.故答案为:【答案点睛】本题考查集合的并集运算,属于容易题.16、【答案解析】对原方程两边求导,然后令求得表达式的值.【题目详解】对等式两边求导,得,令,则.【答案点睛】本小题主要考查二项式展开式,考查利用
13、导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【题目详解】(1)当时,即,无解;当时,即,得;当时,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的最小值为.【答案点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.18、详见解析【答案解析】选择,利用正弦定理求得,利用余弦定理求得,再计算边上的高.选择,利用正弦定理得出,由余弦定理求出,再求边上的高.选择,利用余弦定理列方程求出,再计算边上的高.【题目详解】选择,在中,由正弦定理得,即,解得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择,在中,由正弦定理得,又因为,所以,即;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.选择,在中,由,得;由余弦定理得,即,化简得,解得或(舍去);所以边上的高为.【答案点睛】本小题主要考查真闲的了、余弦定理解三角形,属于中档题.19、.【答案解析】根据特征多项式可得,可得,进而可得矩阵A的