收藏 分享(赏)

2023届江西上饶中学高三压轴卷数学试卷(含解析).doc

上传人:la****1 文档编号:19846 上传时间:2023-01-06 格式:DOC 页数:19 大小:2.29MB
下载 相关 举报
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第1页
第1页 / 共19页
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第2页
第2页 / 共19页
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第3页
第3页 / 共19页
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第4页
第4页 / 共19页
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第5页
第5页 / 共19页
2023届江西上饶中学高三压轴卷数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设i为虚数单位,若复数,则复数z等于( )ABCD02已知等差数列中,若,则此数列中一定为0的是( )ABCD3已知集合,则ABCD4已知函数,则下列结论错误的是( )A函数的最小正周期

2、为B函数的图象关于点对称C函数在上单调递增D函数的图象可由的图象向左平移个单位长度得到5设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,则B若,,则C若,则D若,则6已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )ABCD7已知为圆:上任意一点,若线段的垂直平分线交直线于点,则点的轨迹方程为( )ABC()D()8在等差数列中,若,则( )A8B12C14D109设,则( )ABCD10已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点若双曲线的离心率为2,三角形AOB的面积为,则p=( )A1BC2D311已知角的顶点与坐标原点重合,始

3、边与轴的非负半轴重合,它的终边过点,则的值为( )ABCD12已知集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若双曲线的两条渐近线斜率分别为,若,则该双曲线的离心率为_.14(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是_15如图,在正四棱柱中,P是侧棱上一点,且.设三棱锥的体积为,正四棱柱的体积为V,则的值为_.16若点为点在平面上的正投影,则记.如图,在棱长为1的正方体中,记平面为,平面为,点是线段上一动点,.给出下列四个结论:为的重心;当时,平面;当三棱锥的体积最大时,三棱锥外接球的表面积为.其中,所有正确结论的序号是_.三、解答题:共70

4、分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,已知四边形的直角梯形,BC,为线段的中点,平面,为线段上一点(不与端点重合)(1)若,()求证:PC平面;()求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由18(12分)已知函数.(1)解不等式;(2)若,求证:.19(12分)设函数,(1)当,求不等式的解集;(2)已知,的最小值为1,求证:.20(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植

5、物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)21(12分)如图,三棱锥中,点,分别为,的中点,且平面平面求证:平面;若,求证:平面平面.22(10分)如图,四棱锥中,四边形是矩形,为

6、正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据复数除法的运算法则,即可求解.【题目详解】.故选:B.【答案点睛】本题考查复数的代数运算,属于基础题.2、A【答案解析】将已知条件转化为的形式,由此确定数列为的项.【题目详解】由于等差数列中,所以,化简得,所以为.故选:A【答案点睛】本小题主要考查等差数列的基本量计算,属于基础题.3、C【答案解析】分析:根据集合可直接求解.详解:,故选C点睛:集合题

7、也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.4、D【答案解析】由可判断选项A;当时,可判断选项B;利用整体换元法可判断选项C;可判断选项D.【题目详解】由题知,最小正周期,所以A正确;当时,所以B正确;当时,所以C正确;由的图象向左平移个单位,得,所以D错误.故选:D.【答案点睛】本题考查余弦型函数的性质,涉及到周期性、对称性、单调性以及图象变换后的解析式等知识,是一道中档题.5、C【答案解析】在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理

8、得;在D中,与平行或【题目详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,则与相交或平行,故A错误;在B中,若,则或,故B错误;在C中,若,则由线面垂直的判定定理得,故C正确;在D中,若,则与平行或,故D错误故选C【答案点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题6、A【答案解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程【题目详解】抛物线y22px(p0)的焦点坐标为(1,0),则p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以双曲线的渐近线方程为:y故选:A【答案点睛】本

9、题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用7、B【答案解析】如图所示:连接,根据垂直平分线知,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,故,故轨迹方程为.故选:.【答案点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.8、C【答案解析】将,分别用和的形式表示,然后求解出和的值即可表示.【题目详解】设等差数列的首项为,公差为,则由,得解得,所以故选C【答案点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.9、D【答案解析】集合是一次不等式的解集

10、,分别求出再求交集即可【题目详解】,则故选【答案点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题10、C【答案解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,渐近线方程为,求出交点,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;11、B【答案解析】根据三角函数定义得到,故,再利用和差公式得到答案.【题目详解】角的终边过点,.故选:.【答案点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.12、A【答案解析】考虑既属于又属于的集合,即得.【题目详解】.故选:【答案点睛】本题考查集合的交运算,属于基础题.二、填空题:本题共4小题,每小题5分

11、,共20分。13、2【答案解析】由题得,再根据求解即可.【题目详解】双曲线的两条渐近线为,可令,则,所以,解得.故答案为:2.【答案点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14、【答案解析】依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即15、【答案解析】设正四棱柱的底面边长,高,再根据柱体、锥体的体积公式计算可得.【题目详解】解:设正四棱柱的底面边长,高,则,即故答案为:【答案点睛】本题考查柱体、锥体的体积计算,属于基础题.16、【答案解析】点在平面内的正投影为点,而正方体的体对角线与和它不相交的的面对角线垂直,所以直线垂直于

12、平面,而为正三角形,可得为正三角形的重心,所以是正确的;取的中点,连接,则点在平面的正投影在上,记为,而平面平面,所以,所以正确;若设,则由可得,然后对应边成比例,可解,所以正确;由于,而的面积是定值,所以当点到平面的距离最大时,三棱锥的体积最大,而当点与点重合时,点到平面的距离最大,此时为棱长为的正四面体,其外接球半径,则球,所以错误.【题目详解】因为,连接,则有平面平面为正三角形,所以为正三角形的中心,也是的重心,所以正确;由平面,可知平面平面,记,由,可得平面平面,则,所以正确;若平面,则,设由得,易得,由,则,由得,解得,所以正确;当与重合时,最大,为棱长为的正四面体,其外接球半径,则

13、球,所以错误.故答案为:【答案点睛】此题考查立体几何中的垂直、平行关系,求几何体的体积,考查空间想象能力和推理能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)()证明见解析()(2)存在,【答案解析】(1)(i)连接交于点,连接,依题意易证四边形为平行四边形,从而有,由此能证明PC平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【题目详解】(1)()证明:连接交于点,连接,因为为线段的中点,所以,因为,所以因为所以四边形为平行四边形所以又因为,所以又因为平面,平面,所以平面()解:如图,在平行四边形中因为,所以以为原点建立空间直角坐标系则,所以, 平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【答案点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用范文 > 工作计划

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2